函数f(x)=3x2+2*cos(pi*x)在x=1处的导数为6+2pi
函数f(x)=3x2+2*cos(pi*x)在x=1处的导数为6+2pi
求定积分[img=165x50]17da65381a63c9b.png[/img]; ( ) A: (exp(6*pi) - 1)/(5*exp(2*pi)) B: (exp(6*pi) - 1)*(5*exp(2*pi)) C: (exp(6*pi) - 1)/(exp(2*pi)) D: (exp(6*pi) - 1)+(5*exp(2*pi))
求定积分[img=165x50]17da65381a63c9b.png[/img]; ( ) A: (exp(6*pi) - 1)/(5*exp(2*pi)) B: (exp(6*pi) - 1)*(5*exp(2*pi)) C: (exp(6*pi) - 1)/(exp(2*pi)) D: (exp(6*pi) - 1)+(5*exp(2*pi))
函数\( y = 3\sin \left( {\pi x + {\pi \over 6}} \right) \) 的周期为( ). A: 2 B: \( \pi \) C: 1 D: \( 2\pi \)
函数\( y = 3\sin \left( {\pi x + {\pi \over 6}} \right) \) 的周期为( ). A: 2 B: \( \pi \) C: 1 D: \( 2\pi \)
下列各组角中,可以作为向量的方向角的是(<br/>) A: $\frac{\pi }{3},\,\frac{\pi }{4},\,\frac{2\pi }{3}$ B: $-\frac{\pi }{3}\,,\frac{\pi }{4}\,,\frac{\pi }{3}$ C: $\frac{\pi }{6},\,\pi ,\,\frac{\pi }{6}$ D: $\frac{2\pi }{3},\,\frac{\pi }{3},\,\frac{\pi }{3}$
下列各组角中,可以作为向量的方向角的是(<br/>) A: $\frac{\pi }{3},\,\frac{\pi }{4},\,\frac{2\pi }{3}$ B: $-\frac{\pi }{3}\,,\frac{\pi }{4}\,,\frac{\pi }{3}$ C: $\frac{\pi }{6},\,\pi ,\,\frac{\pi }{6}$ D: $\frac{2\pi }{3},\,\frac{\pi }{3},\,\frac{\pi }{3}$
计算曲线积分\({\oint_L {({x^2} + {y^2})} ^3}ds\),其中\(L\)为圆周\(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\)。 A: \(2\pi {a^7}\) B: \(2\pi {a^6}\) C: \(2\pi {a^5}\) D: \(2\pi {a^8}\)
计算曲线积分\({\oint_L {({x^2} + {y^2})} ^3}ds\),其中\(L\)为圆周\(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\)。 A: \(2\pi {a^7}\) B: \(2\pi {a^6}\) C: \(2\pi {a^5}\) D: \(2\pi {a^8}\)
由曲面\( z = {x^2} + {y^2} \) ,\( {x^2} + {y^2} = 4 \) 和\( xOy \) 平面所围立体体积为( ) A: \( 6\pi \) B: \( 7\pi \) C: \( 8\pi \) D: \( 9\pi \)
由曲面\( z = {x^2} + {y^2} \) ,\( {x^2} + {y^2} = 4 \) 和\( xOy \) 平面所围立体体积为( ) A: \( 6\pi \) B: \( 7\pi \) C: \( 8\pi \) D: \( 9\pi \)
Solve $\int_{-\frac{1}{2}}^1{1-x^2}dx=$? A: $\frac{\pi}{3}+\frac{\sqrt{3}}{8}$. B: $\frac{\pi}{2}$. C: $\frac{\pi}{6}+\frac{\sqrt{3}}{4}$. D: $\frac{\pi}{4}$.
Solve $\int_{-\frac{1}{2}}^1{1-x^2}dx=$? A: $\frac{\pi}{3}+\frac{\sqrt{3}}{8}$. B: $\frac{\pi}{2}$. C: $\frac{\pi}{6}+\frac{\sqrt{3}}{4}$. D: $\frac{\pi}{4}$.
已知\( y = \ln \sin x \)在\( \left[ { { \pi \over 6}, { { 5\pi } \over 6}} \right] \)上满足罗尔定理,则\( \xi \)=( ) A: 0 B: 1 C: \( { { \pi \over 2}} \) D: \( \pi \)
已知\( y = \ln \sin x \)在\( \left[ { { \pi \over 6}, { { 5\pi } \over 6}} \right] \)上满足罗尔定理,则\( \xi \)=( ) A: 0 B: 1 C: \( { { \pi \over 2}} \) D: \( \pi \)
在区间[0,1]上随机取一个数x,sin(x)位于0到1/2的概率为( ). A: pi/6 B: pi/3 C: pi D: pi/2
在区间[0,1]上随机取一个数x,sin(x)位于0到1/2的概率为( ). A: pi/6 B: pi/3 C: pi D: pi/2
$\arctan (-\sqrt{3})=$ A: $-\frac{\pi}{3}$ B: $\frac{\pi}{6}$ C: $\frac{\pi}{3}$ D: $-\frac{\pi}{6}$
$\arctan (-\sqrt{3})=$ A: $-\frac{\pi}{3}$ B: $\frac{\pi}{6}$ C: $\frac{\pi}{3}$ D: $-\frac{\pi}{6}$