\(已知曲面\Sigma:x^2+y^2+z^2=a^2被平面z=h(0 A: \[2\pi a \ln\frac{a}{h}\] B: \[3\pi a \ln\frac{a}{h}\] C: \[4\pi a \ln\frac{a}{h}\] D: \[\pi a \ln\frac{a}{h}\]
\(已知曲面\Sigma:x^2+y^2+z^2=a^2被平面z=h(0 A: \[2\pi a \ln\frac{a}{h}\] B: \[3\pi a \ln\frac{a}{h}\] C: \[4\pi a \ln\frac{a}{h}\] D: \[\pi a \ln\frac{a}{h}\]
函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)
函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)
求定积分[img=208x53]17da65384e03d75.png[/img]; ( ) A: pi/4 - 1/4 B: pi/4 - 1/3 C: pi/4 - 1 D: pi/4 - 1/2
求定积分[img=208x53]17da65384e03d75.png[/img]; ( ) A: pi/4 - 1/4 B: pi/4 - 1/3 C: pi/4 - 1 D: pi/4 - 1/2
双曲抛物面$z=xy$被圆柱面${{x}^{2}}+{{y}^{2}}={{a}^{2}}$截下部分的面积为( ) A: $\frac{2\pi }{3}[{{(1+a)}^{3/2}}+1]$ B: $\frac{2\pi }{3}[{{(1+a)}^{3/2}}-1]$ C: $\frac{2\pi }{3}[{{(1+a)}^{2/3}}+1]$ D: $\frac{2\pi }{3}[{{(1+a)}^{2/3}}-1]$
双曲抛物面$z=xy$被圆柱面${{x}^{2}}+{{y}^{2}}={{a}^{2}}$截下部分的面积为( ) A: $\frac{2\pi }{3}[{{(1+a)}^{3/2}}+1]$ B: $\frac{2\pi }{3}[{{(1+a)}^{3/2}}-1]$ C: $\frac{2\pi }{3}[{{(1+a)}^{2/3}}+1]$ D: $\frac{2\pi }{3}[{{(1+a)}^{2/3}}-1]$
Solve $\int_{-\frac{1}{2}}^1{1-x^2}dx=$? A: $\frac{\pi}{3}+\frac{\sqrt{3}}{8}$. B: $\frac{\pi}{2}$. C: $\frac{\pi}{6}+\frac{\sqrt{3}}{4}$. D: $\frac{\pi}{4}$.
Solve $\int_{-\frac{1}{2}}^1{1-x^2}dx=$? A: $\frac{\pi}{3}+\frac{\sqrt{3}}{8}$. B: $\frac{\pi}{2}$. C: $\frac{\pi}{6}+\frac{\sqrt{3}}{4}$. D: $\frac{\pi}{4}$.
这时线圈平面法线方向与该处磁感强度的方向的夹<br/>角为____________________. A: `\frac{1}{3}\pi` B: `\frac{1}{6}\pi` C: `\frac{1}{2}\pi` D: `\frac{2}{3}\pi`
这时线圈平面法线方向与该处磁感强度的方向的夹<br/>角为____________________. A: `\frac{1}{3}\pi` B: `\frac{1}{6}\pi` C: `\frac{1}{2}\pi` D: `\frac{2}{3}\pi`
函数\( y = 3\sin \left( {\pi x + {\pi \over 6}} \right) \) 的周期为( ). A: 2 B: \( \pi \) C: 1 D: \( 2\pi \)
函数\( y = 3\sin \left( {\pi x + {\pi \over 6}} \right) \) 的周期为( ). A: 2 B: \( \pi \) C: 1 D: \( 2\pi \)
下列各组角中,可以作为向量的方向角的是(<br/>) A: $\frac{\pi }{3},\,\frac{\pi }{4},\,\frac{2\pi }{3}$ B: $-\frac{\pi }{3}\,,\frac{\pi }{4}\,,\frac{\pi }{3}$ C: $\frac{\pi }{6},\,\pi ,\,\frac{\pi }{6}$ D: $\frac{2\pi }{3},\,\frac{\pi }{3},\,\frac{\pi }{3}$
下列各组角中,可以作为向量的方向角的是(<br/>) A: $\frac{\pi }{3},\,\frac{\pi }{4},\,\frac{2\pi }{3}$ B: $-\frac{\pi }{3}\,,\frac{\pi }{4}\,,\frac{\pi }{3}$ C: $\frac{\pi }{6},\,\pi ,\,\frac{\pi }{6}$ D: $\frac{2\pi }{3},\,\frac{\pi }{3},\,\frac{\pi }{3}$
球面 \(x^2 + {y^2} + {z^2} = {a^2}\)含在圆柱面\({x^2} + {y^2} = ax\) 内部的那部分面积为 ( ) A: \(4{a^2}({\pi \over 2} - 1)\) B: \(4{a^2}({\pi \over 3} - 1)\) C: \(4{a^2}({\pi \over 2} + 1)\) D: \(4{a^2}({\pi \over 3} + 1)\)
球面 \(x^2 + {y^2} + {z^2} = {a^2}\)含在圆柱面\({x^2} + {y^2} = ax\) 内部的那部分面积为 ( ) A: \(4{a^2}({\pi \over 2} - 1)\) B: \(4{a^2}({\pi \over 3} - 1)\) C: \(4{a^2}({\pi \over 2} + 1)\) D: \(4{a^2}({\pi \over 3} + 1)\)
时,三个振幅矢量的合矢量等于3A;当$\Delta\varphi$等于 A: $\pi/3$或$2\pi/3$ B: $\pi/3$或$4\pi/3$ C: $2\pi/3$或$4\pi/3$
时,三个振幅矢量的合矢量等于3A;当$\Delta\varphi$等于 A: $\pi/3$或$2\pi/3$ B: $\pi/3$或$4\pi/3$ C: $2\pi/3$或$4\pi/3$