求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3
求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3
已知\( y = {x^3}\cos 2x \),则\( y'' \)为( ). A: 0 B: \( 6x\cos 2x{\rm{ + }}12{x^2}\sin 2x - 4{x^3}\cos 2x \) C: \( 6x\cos 2x - 12{x^2}\sin 2x{\rm{ + }}4{x^3}\cos 2x \) D: \( 6x\cos 2x - 12{x^2}\sin 2x - 4{x^3}\cos 2x \)
已知\( y = {x^3}\cos 2x \),则\( y'' \)为( ). A: 0 B: \( 6x\cos 2x{\rm{ + }}12{x^2}\sin 2x - 4{x^3}\cos 2x \) C: \( 6x\cos 2x - 12{x^2}\sin 2x{\rm{ + }}4{x^3}\cos 2x \) D: \( 6x\cos 2x - 12{x^2}\sin 2x - 4{x^3}\cos 2x \)
1802fa0b3e3fac1.png,求y的一阶导数 A: 3sin^2(x/3) B: sin^2(x/3) C: 3sin^2(x/3)cos(x/3) D: sin^(x/3)cos(x/3)
1802fa0b3e3fac1.png,求y的一阶导数 A: 3sin^2(x/3) B: sin^2(x/3) C: 3sin^2(x/3)cos(x/3) D: sin^(x/3)cos(x/3)
积分(x^3)cos(x^2)dx
积分(x^3)cos(x^2)dx
常微分方程[img=243x26]1802e4d57c1aad8.png[/img]的解为: A: exp(-x)*sin(3^(1/2)*x)*C2+exp(-x)*cos(3^(1/2)*x)*C1-1/4*cos(2*x),C1、C2为任意常数 B: exp(-2x)*cos(3^(1/2)*x)*C2+exp(-2x)*cos(3^(1/2)*x)*C1-1/4*sin(2*x),C1、C2为任意常数 C: exp(-3x)*sin(3^(1/2)*x)*C2+exp(-3x)*sin(3^(1/2)*x)*C1-1/4*sin(2*x),C1、C2为任意常数 D: exp(-4x)*sin(3^(1/2)*x)*C2-exp(-4x)*cos(3^(1/2)*x)*C1-1/4*cos(2*x),C1、C2为任意常数
常微分方程[img=243x26]1802e4d57c1aad8.png[/img]的解为: A: exp(-x)*sin(3^(1/2)*x)*C2+exp(-x)*cos(3^(1/2)*x)*C1-1/4*cos(2*x),C1、C2为任意常数 B: exp(-2x)*cos(3^(1/2)*x)*C2+exp(-2x)*cos(3^(1/2)*x)*C1-1/4*sin(2*x),C1、C2为任意常数 C: exp(-3x)*sin(3^(1/2)*x)*C2+exp(-3x)*sin(3^(1/2)*x)*C1-1/4*sin(2*x),C1、C2为任意常数 D: exp(-4x)*sin(3^(1/2)*x)*C2-exp(-4x)*cos(3^(1/2)*x)*C1-1/4*cos(2*x),C1、C2为任意常数
cos(x)*cos(x/2)*cos(x/4)*cos(x/8).cos(x/(2^(n-1))
cos(x)*cos(x/2)*cos(x/4)*cos(x/8).cos(x/(2^(n-1))
【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
$\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
$\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
设[img=335x39]180307330358786.png[/img],画出函数[img=34x25]180307330bcd082.png[/img]和[img=33x25]1803073313a8ced.png[/img]的图形并填实两条曲线之间的区域. A: Plot[{Cos[x]+x/2,Sin[x]+x/3},{x,0,4},Filling→{2→{1}}] B: Plot[{Cos[x]+x/2,Sin[x]+x/3},{x,0,4},Filling→{1→{2}}] C: Plot[{Cos[x]+x/2,Sin[x]+x/3},{x,0,4},Filling→{2→1}] D: Plot[{Cos[x]+x/2,Sin[x]+x/3},{x,0,4},Filling→{1→2}]
设[img=335x39]180307330358786.png[/img],画出函数[img=34x25]180307330bcd082.png[/img]和[img=33x25]1803073313a8ced.png[/img]的图形并填实两条曲线之间的区域. A: Plot[{Cos[x]+x/2,Sin[x]+x/3},{x,0,4},Filling→{2→{1}}] B: Plot[{Cos[x]+x/2,Sin[x]+x/3},{x,0,4},Filling→{1→{2}}] C: Plot[{Cos[x]+x/2,Sin[x]+x/3},{x,0,4},Filling→{2→1}] D: Plot[{Cos[x]+x/2,Sin[x]+x/3},{x,0,4},Filling→{1→2}]