(襄阳中考)用一条长40cm的绳子围成一个面积为64cm<sup>2</sup>的长方形.设长方形的长为xcm,则可列方程为()。 A: x(20+x)=64 B: x(20-x)=64 C: x(40+x)=64 D: x(40-x)=64
(襄阳中考)用一条长40cm的绳子围成一个面积为64cm<sup>2</sup>的长方形.设长方形的长为xcm,则可列方程为()。 A: x(20+x)=64 B: x(20-x)=64 C: x(40+x)=64 D: x(40-x)=64
224x224x3 的图像数据,不做周边填充,经过 3x3 大小、步长为 2、深度为 64 的卷积核集合,输出的数据维度是 A: 110 x 110 x 3 B: 110 x 110 x 64 C: 111 x 111 x 3 D: 111 x 111 x 64
224x224x3 的图像数据,不做周边填充,经过 3x3 大小、步长为 2、深度为 64 的卷积核集合,输出的数据维度是 A: 110 x 110 x 3 B: 110 x 110 x 64 C: 111 x 111 x 3 D: 111 x 111 x 64
lim[√(x²+x)-√(x²-x)],x→∞
lim[√(x²+x)-√(x²-x)],x→∞
设f(x)=3x,g(x)=x2,则函数g[f(x)]-f[g(x)]=()。
设f(x)=3x,g(x)=x2,则函数g[f(x)]-f[g(x)]=()。
[lncos(x-1)]/[1-sin(πx/2)]x≠1
[lncos(x-1)]/[1-sin(πx/2)]x≠1
怎么证明D(X)=E(X^2)-[E(X)]^2和D(X)=E[X-E(X)]^2
怎么证明D(X)=E(X^2)-[E(X)]^2和D(X)=E[X-E(X)]^2
设f(x)=1/1-x求f[f(x)]和f{f[f(x)]}
设f(x)=1/1-x求f[f(x)]和f{f[f(x)]}
已知列表lst=[ [‘苹果’,’红色’] , [‘葡萄’,’紫色’] , [‘草莓’,’红色’] ],则以下能够获取所有水果名称列表的表达式是: A: [ x[0] for x in lst ] B: [ x[1] for x in lst ] C: [ x(0) for x in lst ] D: [ x for x in lst if x==’水果’]
已知列表lst=[ [‘苹果’,’红色’] , [‘葡萄’,’紫色’] , [‘草莓’,’红色’] ],则以下能够获取所有水果名称列表的表达式是: A: [ x[0] for x in lst ] B: [ x[1] for x in lst ] C: [ x(0) for x in lst ] D: [ x for x in lst if x==’水果’]
若有x为3,执行语句x **= 4,x值为 A: 3 B: 12 C: 64 D: 81
若有x为3,执行语句x **= 4,x值为 A: 3 B: 12 C: 64 D: 81
已知随机变量X的数学期望E(X)存在,则下列等式中不一定成立的是 未知类型:{'options': ['E[E(X)] = E(X)', '', 'E[X−E(X)] = 0', 'E[X+E(X)] = 2E(X )'], 'type': 102}
已知随机变量X的数学期望E(X)存在,则下列等式中不一定成立的是 未知类型:{'options': ['E[E(X)] = E(X)', '', 'E[X−E(X)] = 0', 'E[X+E(X)] = 2E(X )'], 'type': 102}