计算下列积分:[tex=6.143x2.786]1sD7wa0QZ28QhK+aWUhyDTqWerxS3G7GxlgcbyNE4n30IZjobfDu7w6P1vaVEeM+[/tex].
计算下列积分:[tex=6.143x2.786]1sD7wa0QZ28QhK+aWUhyDTqWerxS3G7GxlgcbyNE4n30IZjobfDu7w6P1vaVEeM+[/tex].
判别[tex=6.143x2.786]X2gab7jvTTuZN6ngOOmQIPtBGenZ/r6Xr9GLN9++vJmnZFmlOOB9bvSG5fBOilk+[/tex]的敛散性,如果收敛,计算反常积分的值.
判别[tex=6.143x2.786]X2gab7jvTTuZN6ngOOmQIPtBGenZ/r6Xr9GLN9++vJmnZFmlOOB9bvSG5fBOilk+[/tex]的敛散性,如果收敛,计算反常积分的值.
6.14?3、6.1?4?3、6.?14?3按从小到大顺序排列的是______.6.143、6.14?3、6.1?4?3、6.?14?3按从小到大顺序排列的是______.
6.14?3、6.1?4?3、6.?14?3按从小到大顺序排列的是______.6.143、6.14?3、6.1?4?3、6.?14?3按从小到大顺序排列的是______.
计算下列各积分(利用留数; 圆周均取正向)[p=align:center][tex=6.143x2.786]DxP+dllryumTdYfUjf+7XAGi5SU/ojWeUUgZFttIV+L/AUyukRvaczhWetJzDPya[/tex]
计算下列各积分(利用留数; 圆周均取正向)[p=align:center][tex=6.143x2.786]DxP+dllryumTdYfUjf+7XAGi5SU/ojWeUUgZFttIV+L/AUyukRvaczhWetJzDPya[/tex]
化下列直线的一般方程为射影式方程与标准方程,并求出直线的方向余弦:[tex=6.143x2.786]fnpmC2J6JmQBLyo5NmGAz4rON9TBM09t8UEjC6rjX598lhLPTPBbokto1kAuAH8pSsCqUBsZ5rmPoRYplj7AKw==[/tex]
化下列直线的一般方程为射影式方程与标准方程,并求出直线的方向余弦:[tex=6.143x2.786]fnpmC2J6JmQBLyo5NmGAz4rON9TBM09t8UEjC6rjX598lhLPTPBbokto1kAuAH8pSsCqUBsZ5rmPoRYplj7AKw==[/tex]
设单位反馈系统的开环传递函数[tex=6.143x2.786]MEkf61hz+tzZ5N3ON5ZWRyUQfiJTIGWvKK4ayV+Q4rw4yXy8SOzvACRZULs0B4fg[/tex]试确定闭环系统稳定时, 延迟时间 [tex=0.5x0.786]7x9TMoIrvl/j0z6IvY4dyA==[/tex] 的范围。
设单位反馈系统的开环传递函数[tex=6.143x2.786]MEkf61hz+tzZ5N3ON5ZWRyUQfiJTIGWvKK4ayV+Q4rw4yXy8SOzvACRZULs0B4fg[/tex]试确定闭环系统稳定时, 延迟时间 [tex=0.5x0.786]7x9TMoIrvl/j0z6IvY4dyA==[/tex] 的范围。
将下列积分改成若干个区间上定积分之和,然后分别使用[b]Newton-Leibniz[/b]公式求出其值:[tex=6.143x2.786]neWiKaNJaOkp1KlLJ4fTaHYi1JG2dcavxLHcJSdJKa0=[/tex].
将下列积分改成若干个区间上定积分之和,然后分别使用[b]Newton-Leibniz[/b]公式求出其值:[tex=6.143x2.786]neWiKaNJaOkp1KlLJ4fTaHYi1JG2dcavxLHcJSdJKa0=[/tex].
总体方差的无偏估计量是 未知类型:{'options': ['[tex=6.143x2.786]U2zNncHvdIGkuydjUdTBwNeo2N2G9FEE3SoFIUSUEBd1KzaxyNcmsV1Dk+MIWH2D45i4bDB8ppHj9x55KQNQjg==[/tex]', '[tex=6.143x2.857]U2zNncHvdIGkuydjUdTBwNeo2N2G9FEE3SoFIUSUEBd1KzaxyNcmsV1Dk+MIWH2DuYuEhbImm7Qm2u+f3AMwBA==[/tex]', '[tex=6.143x2.857]U2zNncHvdIGkuydjUdTBwNeo2N2G9FEE3SoFIUSUEBd1KzaxyNcmsV1Dk+MIWH2DzZBHsPYgBWJtn46NupW/1A==[/tex]', '[tex=7.214x3.429]k97KyOmP+QHjBuSF9+lHe6ojZvRxC6cClwMEgKlYzSUSOiuBdZ6c2nJx9y5+Gpaulb7EVVm6tpxPzZYQcseEDQ==[/tex]'], 'type': 102}
总体方差的无偏估计量是 未知类型:{'options': ['[tex=6.143x2.786]U2zNncHvdIGkuydjUdTBwNeo2N2G9FEE3SoFIUSUEBd1KzaxyNcmsV1Dk+MIWH2D45i4bDB8ppHj9x55KQNQjg==[/tex]', '[tex=6.143x2.857]U2zNncHvdIGkuydjUdTBwNeo2N2G9FEE3SoFIUSUEBd1KzaxyNcmsV1Dk+MIWH2DuYuEhbImm7Qm2u+f3AMwBA==[/tex]', '[tex=6.143x2.857]U2zNncHvdIGkuydjUdTBwNeo2N2G9FEE3SoFIUSUEBd1KzaxyNcmsV1Dk+MIWH2DzZBHsPYgBWJtn46NupW/1A==[/tex]', '[tex=7.214x3.429]k97KyOmP+QHjBuSF9+lHe6ojZvRxC6cClwMEgKlYzSUSOiuBdZ6c2nJx9y5+Gpaulb7EVVm6tpxPzZYQcseEDQ==[/tex]'], 'type': 102}
总体方差的无偏估计量是 未知类型:{'options': ['[tex=6.143x2.786]U2zNncHvdIGkuydjUdTBwNeo2N2G9FEE3SoFIUSUEBd1KzaxyNcmsV1Dk+MIWH2D45i4bDB8ppHj9x55KQNQjg==[/tex]', '[tex=6.143x2.857]U2zNncHvdIGkuydjUdTBwNeo2N2G9FEE3SoFIUSUEBd1KzaxyNcmsV1Dk+MIWH2DuYuEhbImm7Qm2u+f3AMwBA==[/tex]', '[tex=6.143x2.857]U2zNncHvdIGkuydjUdTBwNeo2N2G9FEE3SoFIUSUEBd1KzaxyNcmsV1Dk+MIWH2DzZBHsPYgBWJtn46NupW/1A==[/tex]', '[tex=7.214x3.429]k97KyOmP+QHjBuSF9+lHe6ojZvRxC6cClwMEgKlYzSUSOiuBdZ6c2nJx9y5+Gpaulb7EVVm6tpxPzZYQcseEDQ==[/tex]'], 'type': 102}
总体方差的无偏估计量是 未知类型:{'options': ['[tex=6.143x2.786]U2zNncHvdIGkuydjUdTBwNeo2N2G9FEE3SoFIUSUEBd1KzaxyNcmsV1Dk+MIWH2D45i4bDB8ppHj9x55KQNQjg==[/tex]', '[tex=6.143x2.857]U2zNncHvdIGkuydjUdTBwNeo2N2G9FEE3SoFIUSUEBd1KzaxyNcmsV1Dk+MIWH2DuYuEhbImm7Qm2u+f3AMwBA==[/tex]', '[tex=6.143x2.857]U2zNncHvdIGkuydjUdTBwNeo2N2G9FEE3SoFIUSUEBd1KzaxyNcmsV1Dk+MIWH2DzZBHsPYgBWJtn46NupW/1A==[/tex]', '[tex=7.214x3.429]k97KyOmP+QHjBuSF9+lHe6ojZvRxC6cClwMEgKlYzSUSOiuBdZ6c2nJx9y5+Gpaulb7EVVm6tpxPzZYQcseEDQ==[/tex]'], 'type': 102}
设幂级数[tex=6.143x2.786]1VOO0Jwm6ojCyMMTUqy4YCvc84RmfkXhUbrwTr96Y/gBsYex1cEAkEGx7dAaY/Lu[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]收敛,在[tex=1.857x1.0]X7etWab1J10Xwqu65uIXXQ==[/tex]发散,试确定该幂级数的收敛域并说明理由.
设幂级数[tex=6.143x2.786]1VOO0Jwm6ojCyMMTUqy4YCvc84RmfkXhUbrwTr96Y/gBsYex1cEAkEGx7dAaY/Lu[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]收敛,在[tex=1.857x1.0]X7etWab1J10Xwqu65uIXXQ==[/tex]发散,试确定该幂级数的收敛域并说明理由.