EIGRP路由协议的可行条件是()。 A: AD=FD B: AD<FD C: AD>FD D: AD>=FD
EIGRP路由协议的可行条件是()。 A: AD=FD B: AD<FD C: AD>FD D: AD>=FD
【单选题】如图, AB 两点间电压 U AB =______ 。 A . E 1 - E 2 - IR B . E 2 - E 1 - IR C . E 2 - E 1 + IR D . E 1 - E 2 + IR A. E 1 - E 2 - IR B. E 2 - E 1 - IR C. E 2 - E 1 + IR D. E 1 - E 2 + IR
【单选题】如图, AB 两点间电压 U AB =______ 。 A . E 1 - E 2 - IR B . E 2 - E 1 - IR C . E 2 - E 1 + IR D . E 1 - E 2 + IR A. E 1 - E 2 - IR B. E 2 - E 1 - IR C. E 2 - E 1 + IR D. E 1 - E 2 + IR
123 456 788×123 456 790—123 456 789×123 456 789=()。 A: 一1 B: 0 C: 1 D: 2
123 456 788×123 456 790—123 456 789×123 456 789=()。 A: 一1 B: 0 C: 1 D: 2
如图,CD⊥AB,BE⊥AC,垂足分别是D、E,若AE=EC=2,AD=1,则BD=( )。
如图,CD⊥AB,BE⊥AC,垂足分别是D、E,若AE=EC=2,AD=1,则BD=( )。
用导线全长相对闭合差来衡量导线测量精度的公式是() A: K=MD B: K=1(D/|AD|) C: K=1/(∑D/fD) D: K=1/(fD/∑D)
用导线全长相对闭合差来衡量导线测量精度的公式是() A: K=MD B: K=1(D/|AD|) C: K=1/(∑D/fD) D: K=1/(fD/∑D)
估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。(利用估值定理) A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。(利用估值定理) A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
∫xe^(x^2)dx=( ) A: 1/2(e^(x^2)) B: 1/2(e^(x^2))+C C: -1/2(e^(x^2)) D: -1/2(e^(x^2))十C
∫xe^(x^2)dx=( ) A: 1/2(e^(x^2)) B: 1/2(e^(x^2))+C C: -1/2(e^(x^2)) D: -1/2(e^(x^2))十C
设矩阵\({A^k} = O \),则\({(E - A)^{ - 1}} = \) A: \(E + A + {A^2} + ... + {A^{k - 1}} \) B: \( A + {A^2} + ... + {A^{k - 1}}\) C: \(E + A + {A^2} + ... + {A^{k }}\) D: \(E + {A^2} + ... + {A^{k - 1}}\)
设矩阵\({A^k} = O \),则\({(E - A)^{ - 1}} = \) A: \(E + A + {A^2} + ... + {A^{k - 1}} \) B: \( A + {A^2} + ... + {A^{k - 1}}\) C: \(E + A + {A^2} + ... + {A^{k }}\) D: \(E + {A^2} + ... + {A^{k - 1}}\)
在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y.
在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y.