掷一枚均匀骰子,直到出现的点数小于3为止,记抛掷的次数为X,则以下结果正确的是 A: P(X=2)=2/9 B: P(X≥3)=4/9 C: P(X≤3)=19/27 D: P(X=1)=2/3 E: P(X≤2)=3/4 F: P(X=1)=1/2 G: P(X=2)=1/4 H: P(X<3)=7/8
掷一枚均匀骰子,直到出现的点数小于3为止,记抛掷的次数为X,则以下结果正确的是 A: P(X=2)=2/9 B: P(X≥3)=4/9 C: P(X≤3)=19/27 D: P(X=1)=2/3 E: P(X≤2)=3/4 F: P(X=1)=1/2 G: P(X=2)=1/4 H: P(X<3)=7/8
设函数$y = f({x^3})$可导,求函数的二阶导数$y'' = $( ) A: $6xf'({x^3}) + 9{x^4}f''({x^3})$ B: $6f'({x^3}) + 9{x^3}f''({x^3})$ C: $6xf'({x^3}) + 9{x^3}f''({x^3})$ D: $6{x^2}f'({x^3}) + 9{x^3}f''({x^3})$
设函数$y = f({x^3})$可导,求函数的二阶导数$y'' = $( ) A: $6xf'({x^3}) + 9{x^4}f''({x^3})$ B: $6f'({x^3}) + 9{x^3}f''({x^3})$ C: $6xf'({x^3}) + 9{x^3}f''({x^3})$ D: $6{x^2}f'({x^3}) + 9{x^3}f''({x^3})$
\(二次型f(x)=x^{T}\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}x的秩为\)
\(二次型f(x)=x^{T}\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}x的秩为\)
假设“☆”是一种新的运算,若3☆2=3×4,6☆3=6×7×8,x☆4=840(x>0),那么x等于: A: 2 B: 3 C: 4 D: 5 E: 6 F: 7 G: 8 H: 9
假设“☆”是一种新的运算,若3☆2=3×4,6☆3=6×7×8,x☆4=840(x>0),那么x等于: A: 2 B: 3 C: 4 D: 5 E: 6 F: 7 G: 8 H: 9
以下程序的输出结果是() main( ) { int i , x[3][3]={9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1} , *p=&x[1][1] ; for(i=0 ; i<4 ; i+=2) printf("%d " , p[i]) ;
以下程序的输出结果是() main( ) { int i , x[3][3]={9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1} , *p=&x[1][1] ; for(i=0 ; i<4 ; i+=2) printf("%d " , p[i]) ;
(1)7X=5分之3(2)12分之5x=8分之3(3)X÷9分之4=12分之7(4)3分之2X÷4分之1=9分之8
(1)7X=5分之3(2)12分之5x=8分之3(3)X÷9分之4=12分之7(4)3分之2X÷4分之1=9分之8
已知X的分布律为P(X=-1)=1/4,P(X=0)=1/4,P(X=1)=3/8,P(X=3)=1/8,则E(2X+1)=( ),E([img=42x20]17e0c5d65688ad3.jpg[/img])=( )。
已知X的分布律为P(X=-1)=1/4,P(X=0)=1/4,P(X=1)=3/8,P(X=3)=1/8,则E(2X+1)=( ),E([img=42x20]17e0c5d65688ad3.jpg[/img])=( )。
【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则f2(1)+f(2)f(1)+f2(2)+f(4)f(3)+f2(3)+f(6)f(5)+f2(4)+f(8)f(7)等于( )
已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则f2(1)+f(2)f(1)+f2(2)+f(4)f(3)+f2(3)+f(6)f(5)+f2(4)+f(8)f(7)等于( )
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)