• 2022-06-18 问题

    在CSS样式中,text­-indent指段落的( )。

    在CSS样式中,text­-indent指段落的( )。

  • 2022-06-18 问题

    ()-indent属性可以设置段落首行缩进。 A: p B: line C: text D: word

    ()-indent属性可以设置段落首行缩进。 A: p B: line C: text D: word

  • 2022-06-01 问题

    下列哪个属性能够设置盒模型的左侧外补丁? () A: A.margin: B: B.indent: C: C.margin-left: D: D.text-indent:

    下列哪个属性能够设置盒模型的左侧外补丁? () A: A.margin: B: B.indent: C: C.margin-left: D: D.text-indent:

  • 2021-04-14 问题

    中国大学MOOC: What is the meaning of “Indent”?

    中国大学MOOC: What is the meaning of “Indent”?

  • 2022-06-07 问题

    There are _____ texts. They are Text A _________________, Text B _________________, Text C _________________, Text D _________________.

    There are _____ texts. They are Text A _________________, Text B _________________, Text C _________________, Text D _________________.

  • 2022-05-30 问题

    若函数$y=y(x)$由方程${{\text{e}}^{x+y}}=xy+1$确定,则 ( )。 A: $\text{d}x=\frac{{{\text{e}}^{x+y}}-x}{y-{{\text{e}}^{x+y}}}\text{d}y$ B: $\text{d}y=\frac{{{\text{e}}^{x+y}}-x}{y-{{\text{e}}^{x+y}}}\text{d}x$ C: $\text{d}x=\frac{{{\text{e}}^{x+y}}+x}{y+{{\text{e}}^{x+y}}}\text{d}y$ D: $\text{d}y=\frac{{{\text{e}}^{x+y}}+x}{y+{{\text{e}}^{x+y}}}\text{d}x$

    若函数$y=y(x)$由方程${{\text{e}}^{x+y}}=xy+1$确定,则 ( )。 A: $\text{d}x=\frac{{{\text{e}}^{x+y}}-x}{y-{{\text{e}}^{x+y}}}\text{d}y$ B: $\text{d}y=\frac{{{\text{e}}^{x+y}}-x}{y-{{\text{e}}^{x+y}}}\text{d}x$ C: $\text{d}x=\frac{{{\text{e}}^{x+y}}+x}{y+{{\text{e}}^{x+y}}}\text{d}y$ D: $\text{d}y=\frac{{{\text{e}}^{x+y}}+x}{y+{{\text{e}}^{x+y}}}\text{d}x$

  • 2022-05-30 问题

    函数$f(x)=x+\sin x$的( )。 A: 上凸区间为$(2n\text{ }\!\!\pi\!\!\text{ },(2n+1)\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$((2n-1)\text{ }\!\!\pi\!\!\text{ },2n\text{ }\!\!\pi\!\!\text{ })$ B: 上凸区间为$((2n-1)\text{ }\!\!\pi\!\!\text{ },2n\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$(2n\text{ }\!\!\pi\!\!\text{ },(2n+1)\text{ }\!\!\pi\!\!\text{ })$ C: 上凸区间为$(n\text{ }\!\!\pi\!\!\text{ },(n+1)\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$((n-1)\text{ }\!\!\pi\!\!\text{ },n\text{ }\!\!\pi\!\!\text{ })$ D: 上凸区间为$((n-1)\text{ }\!\!\pi\!\!\text{ },n\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$(n\text{ }\!\!\pi\!\!\text{ },(n+1)\text{ }\!\!\pi\!\!\text{ })$

    函数$f(x)=x+\sin x$的( )。 A: 上凸区间为$(2n\text{ }\!\!\pi\!\!\text{ },(2n+1)\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$((2n-1)\text{ }\!\!\pi\!\!\text{ },2n\text{ }\!\!\pi\!\!\text{ })$ B: 上凸区间为$((2n-1)\text{ }\!\!\pi\!\!\text{ },2n\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$(2n\text{ }\!\!\pi\!\!\text{ },(2n+1)\text{ }\!\!\pi\!\!\text{ })$ C: 上凸区间为$(n\text{ }\!\!\pi\!\!\text{ },(n+1)\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$((n-1)\text{ }\!\!\pi\!\!\text{ },n\text{ }\!\!\pi\!\!\text{ })$ D: 上凸区间为$((n-1)\text{ }\!\!\pi\!\!\text{ },n\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$(n\text{ }\!\!\pi\!\!\text{ },(n+1)\text{ }\!\!\pi\!\!\text{ })$

  • 2022-05-30 问题

    The text can be classified into three types: ______, ______ and ______. A: informative text B: functional text C: expressive text D: operative text

    The text can be classified into three types: ______, ______ and ______. A: informative text B: functional text C: expressive text D: operative text

  • 2022-06-11 问题

    Which of the following is not a basic procedure for text mining? A: Text preprocessing B: Text classification C: Text transformation D: Text mining

    Which of the following is not a basic procedure for text mining? A: Text preprocessing B: Text classification C: Text transformation D: Text mining

  • 2022-06-30 问题

    对数螺线$r={{\text{e}}^{\theta }}$在$\theta =\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$对应点处的切线的直角坐标方程为( )。 A: $y+x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ B: $y-x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ C: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x+1)$ D: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x-1)$

    对数螺线$r={{\text{e}}^{\theta }}$在$\theta =\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$对应点处的切线的直角坐标方程为( )。 A: $y+x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ B: $y-x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ C: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x+1)$ D: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x-1)$

  • 1 2 3 4 5 6 7 8 9 10