t=(1,2,3,4,5),下列方法不能获取到元素3的是()。 A: t[-3] B: t[2:3] C: t[2] D: t[2:3][0]
t=(1,2,3,4,5),下列方法不能获取到元素3的是()。 A: t[-3] B: t[2:3] C: t[2] D: t[2:3][0]
设α1=(1,4,3,-1)T,α2=(2,t,-1,-1)T,α3=(-2,3,1,t+1)T,则 A: 对任意的t,α1,α2,α3必线性无关. B: 仅当t=-3时,α1,α2,α3线性无关. C: 若t=0,则α1,α2,α3线性相关. D: 仅t≠0且t≠-3,α1,α2,α3线性无关.
设α1=(1,4,3,-1)T,α2=(2,t,-1,-1)T,α3=(-2,3,1,t+1)T,则 A: 对任意的t,α1,α2,α3必线性无关. B: 仅当t=-3时,α1,α2,α3线性无关. C: 若t=0,则α1,α2,α3线性相关. D: 仅t≠0且t≠-3,α1,α2,α3线性无关.
已知\(\alpha_{1}=(1,2,-1,1)^T,\alpha_{2}=(2,0,t,0)^T,\alpha_{3}=(0,-4,5,2)^T\)的秩为2\(,\)则\(t\)=______ 。
已知\(\alpha_{1}=(1,2,-1,1)^T,\alpha_{2}=(2,0,t,0)^T,\alpha_{3}=(0,-4,5,2)^T\)的秩为2\(,\)则\(t\)=______ 。
曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
有以下程序?0?2#iclude?0?2#defief(x)x*x*x?0?2mai()?0?2{ita=3,s,t;?0?2?0?2s=f(a+1);t=f((a+1));?0?2?0?2pritf(“%d,%d’,s,t);?0?2}?0?2程序运行后的输出结果是
有以下程序?0?2#iclude?0?2#defief(x)x*x*x?0?2mai()?0?2{ita=3,s,t;?0?2?0?2s=f(a+1);t=f((a+1));?0?2?0?2pritf(“%d,%d’,s,t);?0?2}?0?2程序运行后的输出结果是
对于任意实数a,b,c,线性无关的向量组是()。 A: (a,1,2)T,(2,b,3)T,(0,0,0)T B: (1,2,-3)T,(a,5,7)T,(-2,-4,6)T C: (1,a,1)T,(3,b,5)T,(2,4,7)T,(a,0,c)T D: (1,1,2)T,(0,-1,6)T,(0,0,8)T
对于任意实数a,b,c,线性无关的向量组是()。 A: (a,1,2)T,(2,b,3)T,(0,0,0)T B: (1,2,-3)T,(a,5,7)T,(-2,-4,6)T C: (1,a,1)T,(3,b,5)T,(2,4,7)T,(a,0,c)T D: (1,1,2)T,(0,-1,6)T,(0,0,8)T
t=0:1:5产生行向量t,各元素为0、1、2、3、4、5
t=0:1:5产生行向量t,各元素为0、1、2、3、4、5
设f(1)=0,t<3,试确定信号f(1-1)+f(2-t)为0的t值 A: t>-2或t>-1 B: t=1或t=2 C: t>-1 D: t>-2
设f(1)=0,t<3,试确定信号f(1-1)+f(2-t)为0的t值 A: t>-2或t>-1 B: t=1或t=2 C: t>-1 D: t>-2
(2008年真题)若向量组α1=(1,0,1,1)T,α2=(0,-1,t,2)T,α3=(0,2,-2,-4)T,α4=(2,1,3t-2,0)T的秩为2,则t=[ ]。 A: 1 B: 0 C: -1 D: -2
(2008年真题)若向量组α1=(1,0,1,1)T,α2=(0,-1,t,2)T,α3=(0,2,-2,-4)T,α4=(2,1,3t-2,0)T的秩为2,则t=[ ]。 A: 1 B: 0 C: -1 D: -2
设向量α1=(1 0 1)T,α2=(1 a -1)T,α3=(a 1 1)T。如果β=(2 a2 -2)T不能用α1,α2,α3线性表示,那么a=()。 A: -2 B: -1 C: 1 D: 2
设向量α1=(1 0 1)T,α2=(1 a -1)T,α3=(a 1 1)T。如果β=(2 a2 -2)T不能用α1,α2,α3线性表示,那么a=()。 A: -2 B: -1 C: 1 D: 2