【单选题】已知H 3 PO 4 的各级离解常数以Ka 1 、Ka 2 、Ka 3 表示,则HPO 4 2 - 作为共轭碱的离解常数为: A. Kw/Ka 1 B. Kw/Ka 2 C. Kw/Ka 3 D. Ka 2 /Kw
【单选题】已知H 3 PO 4 的各级离解常数以Ka 1 、Ka 2 、Ka 3 表示,则HPO 4 2 - 作为共轭碱的离解常数为: A. Kw/Ka 1 B. Kw/Ka 2 C. Kw/Ka 3 D. Ka 2 /Kw
求函数[img=102x46]17da6537bc771a0.png[/img]的导数; ( ) A: -x/(a^2 - x^2)^(3/2) B: x/(a^2 - x^2)^(3/2) C: (a^2 - x^2)^(3/2)/x D: (a^2 - x^2)^(1/2)
求函数[img=102x46]17da6537bc771a0.png[/img]的导数; ( ) A: -x/(a^2 - x^2)^(3/2) B: x/(a^2 - x^2)^(3/2) C: (a^2 - x^2)^(3/2)/x D: (a^2 - x^2)^(1/2)
求微分方程[img=372x60]17da65376dc1787.jpg[/img]的通解。 ( ) A: C26*exp(3*x) + (x*exp(3*x)*(x + 1)^2)/2 + C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6 B: C26*exp(3*x) + C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6 C: C26*exp(3*x) + (x*exp(3*x)*(x + 1)^2)/2 D: C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6
求微分方程[img=372x60]17da65376dc1787.jpg[/img]的通解。 ( ) A: C26*exp(3*x) + (x*exp(3*x)*(x + 1)^2)/2 + C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6 B: C26*exp(3*x) + C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6 C: C26*exp(3*x) + (x*exp(3*x)*(x + 1)^2)/2 D: C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6
求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
函数$f(x)={{\text{e}}^{2x-{{x}^{2}}}}$在$x=0$处的$3$次Taylor多项式为 A: $1+2x+2{{x}^{2}}+2{{x}^{3}}$ B: $1+2x+2{{x}^{2}}-4{{x}^{3}}$ C: $1+2x+{{x}^{2}}+\frac{2}{3}{{x}^{3}}$ D: $1+2x+{{x}^{2}}-\frac{2}{3}{{x}^{3}}$
函数$f(x)={{\text{e}}^{2x-{{x}^{2}}}}$在$x=0$处的$3$次Taylor多项式为 A: $1+2x+2{{x}^{2}}+2{{x}^{3}}$ B: $1+2x+2{{x}^{2}}-4{{x}^{3}}$ C: $1+2x+{{x}^{2}}+\frac{2}{3}{{x}^{3}}$ D: $1+2x+{{x}^{2}}-\frac{2}{3}{{x}^{3}}$
函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)
函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)
青书学堂: 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3 ,则 f的矩阵为 。
青书学堂: 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3 ,则 f的矩阵为 。
微分方程$y' = \sqrt{x},y(1)=0$的解为 A: $ \frac{2}{3} x^{\frac{3}{2}} + C $ B: $ \frac{2}{3} x^{\frac{3}{2}} -\frac{2}{3} $ C: $ x^{\frac{3}{2}}-1 $ D: $ x^{\frac{3}{2}}+C $
微分方程$y' = \sqrt{x},y(1)=0$的解为 A: $ \frac{2}{3} x^{\frac{3}{2}} + C $ B: $ \frac{2}{3} x^{\frac{3}{2}} -\frac{2}{3} $ C: $ x^{\frac{3}{2}}-1 $ D: $ x^{\frac{3}{2}}+C $
不等式|5-2x|<1的解集是() A: {x|x<2或x>3} B: {x|2<x<3} C: {x|x<-3或x>-2} D: {x|-3<x<-2}
不等式|5-2x|<1的解集是() A: {x|x<2或x>3} B: {x|2<x<3} C: {x|x<-3或x>-2} D: {x|-3<x<-2}
下述断言正确的是( )。 A: $x-1$是$(x^{2}-1)^{3}(x^{3}-1)$的$3$重因式; B: $x^{2}-1$是$(x^{2}-1)(x^{3}-1)$的单因式; C: $(x-1)^{2}$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$2$重因式; D: $x-1$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$4$重因式。
下述断言正确的是( )。 A: $x-1$是$(x^{2}-1)^{3}(x^{3}-1)$的$3$重因式; B: $x^{2}-1$是$(x^{2}-1)(x^{3}-1)$的单因式; C: $(x-1)^{2}$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$2$重因式; D: $x-1$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$4$重因式。