每个科学家都是勤奋的;每个勤奋又身体健康的人在事业中都会获得成功;存在着身体健康的科学家;所以,存在着事业获得成功的人或无所事事的人。[br][/br] 解:论域取人类集合。F(x):x是勤奋的;G(x ):x是身体健康的;P(x):x是科学家;Q (x):是事业获得成功的人;R(x):是无所事事的人。个体常元用a表示 则推理化形式为: 前提:∀x(P(x)→F(x)), ∀x (F(x)∧G(x )→Q(x)) , ∃x(G(x )∧P(x)) 结论:∃x(Q (x)∨R(x)) (1)∃x(G(x )∧P(x)) P前提引入规则 (2) T(1),ES (3)G(a) T(2),I化简律 (4) T(2),II化简律 (5)∀x(P(x)→F(x)) P前提引入规则 (6)P(a)→F(a) T(5),US (7) T(4)(6),I假言推理 (8) T(3)(7),I附加律 (9)∀x(F(x)∧G(x )→Q(x)) P前提引入规则 (10) F(a)∧G(a)→Q(a) T(9), Us (11) Q(a) T(8)(10),I假言推理 (12) T(11),I附加律 (13) ∃x(Q(x)∨R(x)) T(12),EG 结论成立:存在着事业获得成功的人或无所事事的人。
每个科学家都是勤奋的;每个勤奋又身体健康的人在事业中都会获得成功;存在着身体健康的科学家;所以,存在着事业获得成功的人或无所事事的人。[br][/br] 解:论域取人类集合。F(x):x是勤奋的;G(x ):x是身体健康的;P(x):x是科学家;Q (x):是事业获得成功的人;R(x):是无所事事的人。个体常元用a表示 则推理化形式为: 前提:∀x(P(x)→F(x)), ∀x (F(x)∧G(x )→Q(x)) , ∃x(G(x )∧P(x)) 结论:∃x(Q (x)∨R(x)) (1)∃x(G(x )∧P(x)) P前提引入规则 (2) T(1),ES (3)G(a) T(2),I化简律 (4) T(2),II化简律 (5)∀x(P(x)→F(x)) P前提引入规则 (6)P(a)→F(a) T(5),US (7) T(4)(6),I假言推理 (8) T(3)(7),I附加律 (9)∀x(F(x)∧G(x )→Q(x)) P前提引入规则 (10) F(a)∧G(a)→Q(a) T(9), Us (11) Q(a) T(8)(10),I假言推理 (12) T(11),I附加律 (13) ∃x(Q(x)∨R(x)) T(12),EG 结论成立:存在着事业获得成功的人或无所事事的人。
构造下式的推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)⋀Z(x));结论:∃x(R(x)⋀Z(x))。(1)∃x(Q(x)⋀Z(x)) P(2)Q(c)⋀Z(c) ES(1)(3)∀x(Q(x)→R(x)) P(4)Q(c)→R(c) US(3)(5)Q(c) T(2)I(6)R(c) T(2)(4)I(7)Z(c) T(2)I(8)R(c)⋀Z(c) T(6)(7)I(9)∃x(R(x)⋀Z(x)) EG(8)以上推理是有效的。 A: 正确 B: 错误
构造下式的推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)⋀Z(x));结论:∃x(R(x)⋀Z(x))。(1)∃x(Q(x)⋀Z(x)) P(2)Q(c)⋀Z(c) ES(1)(3)∀x(Q(x)→R(x)) P(4)Q(c)→R(c) US(3)(5)Q(c) T(2)I(6)R(c) T(2)(4)I(7)Z(c) T(2)I(8)R(c)⋀Z(c) T(6)(7)I(9)∃x(R(x)⋀Z(x)) EG(8)以上推理是有效的。 A: 正确 B: 错误
以下程序段实现的输出是()。for(i=0;i<;=9;i++)s[i]=i;for(i=9;i>;=0;i--)printf("%2d",s[i]);[/i][/i] A: 9 7 5 3 1 B: 1 3 5 7 9 C: 9 8 7 6 5 4 3 2 1 0 D: 0 1 2 3 4 5 6 7 8 9
以下程序段实现的输出是()。for(i=0;i<;=9;i++)s[i]=i;for(i=9;i>;=0;i--)printf("%2d",s[i]);[/i][/i] A: 9 7 5 3 1 B: 1 3 5 7 9 C: 9 8 7 6 5 4 3 2 1 0 D: 0 1 2 3 4 5 6 7 8 9
用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。 证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数; 前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x)); 结论:∃x(R(x)∧Z(x))。 (1)∃x(Q(x)∧Z(x)) P (2)Q(c)∧Z(c) ES(1) (3)∀x(Q(x)→R(x)) P (4)Q(c)→R(c) US(3) (5)Q(c) T(2)I (6)R(c) T(2)(4)I (7)Z(c) T(2)I (8)R(c)∧Z(c) T(6)(7)I (9)∃x(R(x)∧Z(x)) EG(8) 本例中一定要把⑴,⑵写在⑶,⑷的前面,因为存在指定以后一定满足全称指定,否则不一定满足。也就是说同一个体变元存在指定一定要先于全称指定
用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。 证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数; 前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x)); 结论:∃x(R(x)∧Z(x))。 (1)∃x(Q(x)∧Z(x)) P (2)Q(c)∧Z(c) ES(1) (3)∀x(Q(x)→R(x)) P (4)Q(c)→R(c) US(3) (5)Q(c) T(2)I (6)R(c) T(2)(4)I (7)Z(c) T(2)I (8)R(c)∧Z(c) T(6)(7)I (9)∃x(R(x)∧Z(x)) EG(8) 本例中一定要把⑴,⑵写在⑶,⑷的前面,因为存在指定以后一定满足全称指定,否则不一定满足。也就是说同一个体变元存在指定一定要先于全称指定
2q^9=q^3+q^6即2q^7=q+q^4
2q^9=q^3+q^6即2q^7=q+q^4
以下程序的输出结果是() main( ) { int i , x[3][3]={9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1} , *p=&x[1][1] ; for(i=0 ; i<4 ; i+=2) printf("%d " , p[i]) ;
以下程序的输出结果是() main( ) { int i , x[3][3]={9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1} , *p=&x[1][1] ; for(i=0 ; i<4 ; i+=2) printf("%d " , p[i]) ;
运行以下程序输出的结果是:( )。i=10while i>;=6:i=i-1if i%4==0:continueelse:print(i,end=' ') A: 10 9 8 7 6 B: 9 8 7 6 5 C: 10 9 7 6 D: 9 7 6 5
运行以下程序输出的结果是:( )。i=10while i>;=6:i=i-1if i%4==0:continueelse:print(i,end=' ') A: 10 9 8 7 6 B: 9 8 7 6 5 C: 10 9 7 6 D: 9 7 6 5
利用反证法证明:R∨S,R→¬Q,S→¬Q,P→Q=>¬P请将下面推理论证的过程补充完整。(说明:输入答案时,不要输入多余的空格)证明过程如下:(1)( ) 假设前提 (2)P→Q P(3) Q T(1)(2) I(4)S→¬Q P(5)( ) T(3)(4) I(6)R∨S P(7)R T(5)(6) I(8)R→¬Q P(9)¬Q T(7)(8) I(10)( )矛盾 T(3)(9) I
利用反证法证明:R∨S,R→¬Q,S→¬Q,P→Q=>¬P请将下面推理论证的过程补充完整。(说明:输入答案时,不要输入多余的空格)证明过程如下:(1)( ) 假设前提 (2)P→Q P(3) Q T(1)(2) I(4)S→¬Q P(5)( ) T(3)(4) I(6)R∨S P(7)R T(5)(6) I(8)R→¬Q P(9)¬Q T(7)(8) I(10)( )矛盾 T(3)(9) I
用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x));结论:∃x(R(x)∧Z(x))。(1)∃x(Q(x)∧Z(x))P(2)Q(c)∧Z(c)ES(1)(3)∀x(Q(x)→R(x))P(4)Q(c)→R(c)US(3)(5)Q(c)T(2)I(6)R(c)T(2)(4)I(7)Z(c)
用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x));结论:∃x(R(x)∧Z(x))。(1)∃x(Q(x)∧Z(x))P(2)Q(c)∧Z(c)ES(1)(3)∀x(Q(x)→R(x))P(4)Q(c)→R(c)US(3)(5)Q(c)T(2)I(6)R(c)T(2)(4)I(7)Z(c)
有以下程序段,单击Command1按钮后,屏幕上的输出结果是( )。 Private Sub Command1_Click() For i=6 To 9 Print Tab(i*i),i Next i End Sub A: 6 7 8 B: 9 C: 6 7 8 9 D: 6 7 E: 8 9 F: 6 G: 7 H: 8 I: 9
有以下程序段,单击Command1按钮后,屏幕上的输出结果是( )。 Private Sub Command1_Click() For i=6 To 9 Print Tab(i*i),i Next i End Sub A: 6 7 8 B: 9 C: 6 7 8 9 D: 6 7 E: 8 9 F: 6 G: 7 H: 8 I: 9