求微分方程[img=143x21]17da5f14490e50e.png[/img]的通解,实验命令为(). A: dsolve(D2y-2*Dy+5*y=sin(2*x),x)ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x) B: dsolve('D2y-2*Dy+5*y=sin(2*x)','x')ans =cos(2*x)*(sin(4*x)/17 - cos(4*x)/68 + 1/4) - sin(2*x)*(cos(4*x)/17 + sin(4*x)/68) + C1*cos(2*x)*exp(x) - C2*sin(2*x)*exp(x) C: dsolve(D2y-2*Dy+5*y=sin(2*x),'x','y')ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)
求微分方程[img=143x21]17da5f14490e50e.png[/img]的通解,实验命令为(). A: dsolve(D2y-2*Dy+5*y=sin(2*x),x)ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x) B: dsolve('D2y-2*Dy+5*y=sin(2*x)','x')ans =cos(2*x)*(sin(4*x)/17 - cos(4*x)/68 + 1/4) - sin(2*x)*(cos(4*x)/17 + sin(4*x)/68) + C1*cos(2*x)*exp(x) - C2*sin(2*x)*exp(x) C: dsolve(D2y-2*Dy+5*y=sin(2*x),'x','y')ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)
求微分方程[img=364x55]17da65386dfd612.png[/img]的通解; ( ) A: - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) B: (3*sin(2*x)*exp(x))/32 - (sin(6*x)*exp(x))/32 - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) C: - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) D: (sin(6*x)*exp(x))/32 - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x)
求微分方程[img=364x55]17da65386dfd612.png[/img]的通解; ( ) A: - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) B: (3*sin(2*x)*exp(x))/32 - (sin(6*x)*exp(x))/32 - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) C: - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) D: (sin(6*x)*exp(x))/32 - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x)
函数\(y = { { \sin x} \over x}\)的导数为( ). A: \( { { x\cos x - \sin x} \over { { x^2}}}\) B: \( { { x\cos x + \sin x} \over { { x^2}}}\) C: \( { { x\sin x - \cos x} \over { { x^2}}}\) D: \( { { x\sin x + \cos x} \over { { x^2}}}\)
函数\(y = { { \sin x} \over x}\)的导数为( ). A: \( { { x\cos x - \sin x} \over { { x^2}}}\) B: \( { { x\cos x + \sin x} \over { { x^2}}}\) C: \( { { x\sin x - \cos x} \over { { x^2}}}\) D: \( { { x\sin x + \cos x} \over { { x^2}}}\)
求不定积分[img=132x48]17da6537fc8dad6.png[/img]; ( ) A: -(4*(cos(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) B: (4*(sin(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) C: (4*(cos(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) D: (4*(cos(x/2)/2 + 2*cos(x/2)))/(17*exp(2*x))
求不定积分[img=132x48]17da6537fc8dad6.png[/img]; ( ) A: -(4*(cos(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) B: (4*(sin(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) C: (4*(cos(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) D: (4*(cos(x/2)/2 + 2*cos(x/2)))/(17*exp(2*x))
求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3
求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3
17e0b849d3a4a3b.jpg,计算[img=19x34]17e0ab14a855463.jpg[/img]的实验命令为( ). A: syms x; f=diff((1+sin(x)^2)/cos(x),1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2 B: f=diff((1+sinx^2)/cosx,1)f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;f=diff((1+sinx^2)/cosx,1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2
17e0b849d3a4a3b.jpg,计算[img=19x34]17e0ab14a855463.jpg[/img]的实验命令为( ). A: syms x; f=diff((1+sin(x)^2)/cos(x),1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2 B: f=diff((1+sinx^2)/cosx,1)f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;f=diff((1+sinx^2)/cosx,1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2
设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)
设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)
$\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
$\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
欧拉公式正确的是 A: cos(x)=(ex+e-x)/2,sin(x)=(ex-e-x)/2 B: cos(x)=(ejx+e-jx)/2,sin(x)=(ejx-e-jx)/(2j) C: cos(x)=(ejx+e-jx)/(2j),sin(x)=(ejx-e-jx)/2 D: cos(x)=(ejx+e-jx)/2,sin(x)=(ejx-e-jx)/2
欧拉公式正确的是 A: cos(x)=(ex+e-x)/2,sin(x)=(ex-e-x)/2 B: cos(x)=(ejx+e-jx)/2,sin(x)=(ejx-e-jx)/(2j) C: cos(x)=(ejx+e-jx)/(2j),sin(x)=(ejx-e-jx)/2 D: cos(x)=(ejx+e-jx)/2,sin(x)=(ejx-e-jx)/2