• 2022-05-26 问题

    当x趋向于0时,((x-2x)/(x-3x))的极限值为 A: -1/2 B: 1/2 C: -1 D: -2

    当x趋向于0时,((x-2x)/(x-3x))的极限值为 A: -1/2 B: 1/2 C: -1 D: -2

  • 2022-06-04 问题

    已知函数f(x)=x-2x,那么f(3)=______.

    已知函数f(x)=x-2x,那么f(3)=______.

  • 2022-05-26 问题

    当x趋向于0时,((x-2x)/(x-3x))的极限值为()。 A: A-1/2 B: B1/2 C: C-1 D: D-2

    当x趋向于0时,((x-2x)/(x-3x))的极限值为()。 A: A-1/2 B: B1/2 C: C-1 D: D-2

  • 2021-04-14 问题

    当x趋向于0时,((x-2x)/(x-3x))的极限值为

    当x趋向于0时,((x-2x)/(x-3x))的极限值为

  • 2021-04-14 问题

    当x趋向于0时,((x-2x)/(x-3x))的极限值为()。

    当x趋向于0时,((x-2x)/(x-3x))的极限值为()。

  • 2022-06-11 问题

    limx→0(x^4sin1/x+e^x-e^-x-2x)/sinx^3的值?

    limx→0(x^4sin1/x+e^x-e^-x-2x)/sinx^3的值?

  • 2022-05-31 问题

    数学式 A: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sinx^2-Cos2x)) B: (Exp(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) C: (Exp(2*x)*Ln(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) D: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x)^2-Cos(x)^2))

    数学式 A: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sinx^2-Cos2x)) B: (Exp(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) C: (Exp(2*x)*Ln(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) D: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x)^2-Cos(x)^2))

  • 2022-06-01 问题

    求微分方程[img=101x35]17da5f15503f795.png[/img] 的通解,实验命令为(). A: dsolve(Dy+2*x*y=x*exp(-x^2))ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 B: dsolve('Dy+2*x*y=x*exp(-x^2)','x')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 C: dsolve('Dy+2*x*y=x*exp(-x^2)')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2

    求微分方程[img=101x35]17da5f15503f795.png[/img] 的通解,实验命令为(). A: dsolve(Dy+2*x*y=x*exp(-x^2))ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 B: dsolve('Dy+2*x*y=x*exp(-x^2)','x')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 C: dsolve('Dy+2*x*y=x*exp(-x^2)')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2

  • 2022-06-03 问题

    在x值处于-2~2、4~8时值为“真”,否则为“假”的表达式是______。 A: (2>x>-2)||(4>x>8) B: !(((x<-2)||(x>2))&&((x<=4)||(x>8))) C: (x<2)&&(x>=-2)&&(x>4)&&(x<8) D: (x>-2)&&(x>4)||(x<8)&&(x<2)

    在x值处于-2~2、4~8时值为“真”,否则为“假”的表达式是______。 A: (2>x>-2)||(4>x>8) B: !(((x<-2)||(x>2))&&((x<=4)||(x>8))) C: (x<2)&&(x>=-2)&&(x>4)&&(x<8) D: (x>-2)&&(x>4)||(x<8)&&(x<2)

  • 2022-06-09 问题

    设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)

    设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)

  • 1 2 3 4 5 6 7 8 9 10