举一反三
- $\frac{e^x+e^{-x}}{e^x-e^{-x}}$水平渐近线$y=$______ 铅直渐近线$x=$______
- 已知随机变量X的数学期望E(X)存在,则下列等式中不恒成立的是( ) A: E[E(X)]=E(X) B: E[X+E(X)]=2E(X) C: E[X-E(X)]=0 D: E(X2)=[E(X)]2
- 【多选题】已知 X 为随机变量,且 E ( X ), D ( X ) 均存在,则下列式子成立的有 (4.0分) A. E[X-E(X)]=0 B. E[E(X)]=E(X) C. D[E(X)]=0 D. E[X+E(X)]=2E(X)
- 【单选题】极限 lim x → 0 1 − cos 3 x x sin 3 x 的值为? A. 0 B. 1/6 C. 2/3 D. 3/2
- 下面代码的输出是什么? x = 0 while x < 4: x = x + 1 print("x is", x) A: x is 0 B: x is 1 C: x is 2 D: x is 3 E: x is 4
内容
- 0
下面代码的输出结果是哪个选项?x = 0 if x < 4: x = x + 1 print("x is", x) A: x is 0 B: x is 1 C: x is 2 D: x is 3 E: x is 4
- 1
数学式 A: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sinx^2-Cos2x)) B: (Exp(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) C: (Exp(2*x)*Ln(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) D: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x)^2-Cos(x)^2))
- 2
求微分方程[img=364x55]17da65386dfd612.png[/img]的通解; ( ) A: - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) B: (3*sin(2*x)*exp(x))/32 - (sin(6*x)*exp(x))/32 - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) C: - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) D: (sin(6*x)*exp(x))/32 - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x)
- 3
常微分方程[img=243x26]1802e4d57c1aad8.png[/img]的解为: A: exp(-x)*sin(3^(1/2)*x)*C2+exp(-x)*cos(3^(1/2)*x)*C1-1/4*cos(2*x),C1、C2为任意常数 B: exp(-2x)*cos(3^(1/2)*x)*C2+exp(-2x)*cos(3^(1/2)*x)*C1-1/4*sin(2*x),C1、C2为任意常数 C: exp(-3x)*sin(3^(1/2)*x)*C2+exp(-3x)*sin(3^(1/2)*x)*C1-1/4*sin(2*x),C1、C2为任意常数 D: exp(-4x)*sin(3^(1/2)*x)*C2-exp(-4x)*cos(3^(1/2)*x)*C1-1/4*cos(2*x),C1、C2为任意常数
- 4
求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3