当译码器74HC138的使能输入端都为0(E1=E2A’=E2B’=0),此时该译码器拒绝译码。
当译码器74HC138的使能输入端都为0(E1=E2A’=E2B’=0),此时该译码器拒绝译码。
已知74LS138译码器的输入三个使能端(E1=1,E2A=E2B=0)时,地址码A2A1A0=011,则输出Y7~Y0是()
已知74LS138译码器的输入三个使能端(E1=1,E2A=E2B=0)时,地址码A2A1A0=011,则输出Y7~Y0是()
已知三个反应的焓变,A(s)+B2(g)→AB2(g)(1)ΔrSm=-10,E2(g)+0.5B2(g)→E2B(l)(2)ΔrSm=-20,AE4(g)+2B2(g)→AB2(g)+2E2B(l)(3)ΔrSm=-30,则下个反应的熵变为:A(s)+2E2(g)→AE4(g)
已知三个反应的焓变,A(s)+B2(g)→AB2(g)(1)ΔrSm=-10,E2(g)+0.5B2(g)→E2B(l)(2)ΔrSm=-20,AE4(g)+2B2(g)→AB2(g)+2E2B(l)(3)ΔrSm=-30,则下个反应的熵变为:A(s)+2E2(g)→AE4(g)
设`\A,B`为`\n`阶矩阵,且`\(AB)^2 = E`,则有 ( ) A: \[{A^2}{B^2} = E\] B: \[{B^2}{A^2} = E\] C: \[{(BA)^2} = E\] D: 以上都不对
设`\A,B`为`\n`阶矩阵,且`\(AB)^2 = E`,则有 ( ) A: \[{A^2}{B^2} = E\] B: \[{B^2}{A^2} = E\] C: \[{(BA)^2} = E\] D: 以上都不对
估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。(利用估值定理) A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。(利用估值定理) A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
∫xe^(x^2)dx=( ) A: 1/2(e^(x^2)) B: 1/2(e^(x^2))+C C: -1/2(e^(x^2)) D: -1/2(e^(x^2))十C
∫xe^(x^2)dx=( ) A: 1/2(e^(x^2)) B: 1/2(e^(x^2))+C C: -1/2(e^(x^2)) D: -1/2(e^(x^2))十C
HbF的结构为() A: Aα2β2 B: Bα2γ2 C: Cα2δ2 D: Dα2ε2 E: E以上都不是
HbF的结构为() A: Aα2β2 B: Bα2γ2 C: Cα2δ2 D: Dα2ε2 E: E以上都不是
设X是一随机变量,E(X)=μ,DX=δ2(μ,δ2为常数)则对任意常数C,有( )。 A: E(X-C)2=E(X)2一C2 B: E(X-C)2=E(X-μ)2 C: E(X-C)2<E(X-μ)2 D: E(X-C)2≥E(X-μ)2
设X是一随机变量,E(X)=μ,DX=δ2(μ,δ2为常数)则对任意常数C,有( )。 A: E(X-C)2=E(X)2一C2 B: E(X-C)2=E(X-μ)2 C: E(X-C)2<E(X-μ)2 D: E(X-C)2≥E(X-μ)2
从图所示的三种材料的拉伸应力-应变曲线,可以得出结论() [img=196x170]17e0b1ef45a20c6.jpg[/img] A: 强度极限σb(1)= σb(2)>; σb(3);弹性模量E(3)>;E(1)>;E(2);延伸率δ(1)>; δ(2)>; δ(3) B: 强度极限σb(2)>;σb(1)>; σb(3);弹性模量E(2)>;E(1)>;E(3);延伸率δ(1)>; δ(2)>; δ(3) C: 强度极限σb(2)>; σb(1)>; σb(3);弹性模量E(3)>;E(1)>;E(2);延伸率δ(1)>; δ(2)>; δ(3) D: 强度极限σb(1)>;σb(2)>; σb(3);弹性模量E(2)>;E(1)>;E(3);延伸率δ(1)>; δ(2)>; δ(3)
从图所示的三种材料的拉伸应力-应变曲线,可以得出结论() [img=196x170]17e0b1ef45a20c6.jpg[/img] A: 强度极限σb(1)= σb(2)>; σb(3);弹性模量E(3)>;E(1)>;E(2);延伸率δ(1)>; δ(2)>; δ(3) B: 强度极限σb(2)>;σb(1)>; σb(3);弹性模量E(2)>;E(1)>;E(3);延伸率δ(1)>; δ(2)>; δ(3) C: 强度极限σb(2)>; σb(1)>; σb(3);弹性模量E(3)>;E(1)>;E(2);延伸率δ(1)>; δ(2)>; δ(3) D: 强度极限σb(1)>;σb(2)>; σb(3);弹性模量E(2)>;E(1)>;E(3);延伸率δ(1)>; δ(2)>; δ(3)