通过螺纹车削循环指令G92X17.4Z-21F2,可以知道该螺纹的螺距是 A: 92 B: 17.4 C: 21 D: 2
通过螺纹车削循环指令G92X17.4Z-21F2,可以知道该螺纹的螺距是 A: 92 B: 17.4 C: 21 D: 2
对公式∀x(F(x)→G(x,y))∧H(x,y)做代替,则下面公式中正确的是( )。 A: ∀x(F(x)→G(x,y))∧H(z,y) B: ∀x(F(x)→G(y,z))∧H(u,y) C: ∀z(F(z)→G(x,y))∧H(y,y) D: ∀z(F(x)→G(z,y))∧H(x,y)
对公式∀x(F(x)→G(x,y))∧H(x,y)做代替,则下面公式中正确的是( )。 A: ∀x(F(x)→G(x,y))∧H(z,y) B: ∀x(F(x)→G(y,z))∧H(u,y) C: ∀z(F(z)→G(x,y))∧H(y,y) D: ∀z(F(x)→G(z,y))∧H(x,y)
公式“∀xF(x)→∃yG(x,y)”的前束范式是 A: ∃x∃y(F(x)→G(z,y)) B: ∀x∃y(F(x)→G(z,y)) C: ∃x∀y(F(x)→G(z,y)) D: ∀x∀y(F(x)→G(z,y))
公式“∀xF(x)→∃yG(x,y)”的前束范式是 A: ∃x∃y(F(x)→G(z,y)) B: ∀x∃y(F(x)→G(z,y)) C: ∃x∀y(F(x)→G(z,y)) D: ∀x∀y(F(x)→G(z,y))
公式"x ( F(x,y,z ) → "y ( G(x,y,z) → "z H(x,y,z) ) )的前束范式为 A: "x$y$z (F(x,t,w) → ( G(x,y,w ) → H(x,y,z) ) ) B: $x$y$z (F(x,t,w) → ( G(x,y,w ) → H(x,y,z) ) ) C: "x"y$z (F(x,t,w) → ( G(x,y,w ) → H(x,y,z) ) ) D: "x$y"z (F(x,t,w) → ( G(x,y,w ) → H(x,y,z) ) )
公式"x ( F(x,y,z ) → "y ( G(x,y,z) → "z H(x,y,z) ) )的前束范式为 A: "x$y$z (F(x,t,w) → ( G(x,y,w ) → H(x,y,z) ) ) B: $x$y$z (F(x,t,w) → ( G(x,y,w ) → H(x,y,z) ) ) C: "x"y$z (F(x,t,w) → ( G(x,y,w ) → H(x,y,z) ) ) D: "x$y"z (F(x,t,w) → ( G(x,y,w ) → H(x,y,z) ) )
设f: Z×Z→Z(Z为整数集合),f(x,y)= x+y;g: Z×Z→Z,g(x,y)= x×y。 试证明f 和g是满射函数,但不是单射函数。
设f: Z×Z→Z(Z为整数集合),f(x,y)= x+y;g: Z×Z→Z,g(x,y)= x×y。 试证明f 和g是满射函数,但不是单射函数。
下面哪些是公式 ¬∃xF(x)→∀yG(x,y) 的前束范式? A: ∃z∀y(¬F(z)→G(x,y)) B: ∃z∀y(F(z)∨G(x,y)) C: ∀y∃z(F(z)∨G(x,y)) D: 其它选项都不对。
下面哪些是公式 ¬∃xF(x)→∀yG(x,y) 的前束范式? A: ∃z∀y(¬F(z)→G(x,y)) B: ∃z∀y(F(z)∨G(x,y)) C: ∀y∃z(F(z)∨G(x,y)) D: 其它选项都不对。
F[x]中,若f(x)g(x)=2,则f(x^2)g(x^2)=
F[x]中,若f(x)g(x)=2,则f(x^2)g(x^2)=
曲面F(x,y,z)=0和曲面G(x,y,z)=0的交线方程可写为: F(x,y,z)=0,G(x,y,z)=0.
曲面F(x,y,z)=0和曲面G(x,y,z)=0的交线方程可写为: F(x,y,z)=0,G(x,y,z)=0.
设f(x)、g(x)是恒大于零的可导函数,且f’(x)g(x)-f(x)g’(x)<0,则当a<z<b时,有______ A: f(x)g(b)>f(b)g(x). B: f(x)g(a)>f(a)g(x). C: f(x)g(x)>g(b)f(b). D: f(x)g(x)>f(a)g(a).
设f(x)、g(x)是恒大于零的可导函数,且f’(x)g(x)-f(x)g’(x)<0,则当a<z<b时,有______ A: f(x)g(b)>f(b)g(x). B: f(x)g(a)>f(a)g(x). C: f(x)g(x)>g(b)f(b). D: f(x)g(x)>f(a)g(a).
公式∀x(F(x,y,z)→G(x,y))∧H(x,y,z)中,x约束出现 次。 A: 0 B: 1 C: 2 D: 3
公式∀x(F(x,y,z)→G(x,y))∧H(x,y,z)中,x约束出现 次。 A: 0 B: 1 C: 2 D: 3