• 2022-06-17 问题

    求积分计算f{|z|=pi}(z/(z+1))*(e^(2/(z+1)))dz

    求积分计算f{|z|=pi}(z/(z+1))*(e^(2/(z+1)))dz

  • 2021-04-14 问题

    z=cos(xy+y^2)()的全微分为()(2.0分)A.()dz=-sin(xy+y^2)(dx+dy)()B.()dz=-sin(xy+y^2)[ydx+(x+2y)dy]()C.()dz=-sin(xy+y^2)(y^2dx+xdy)()D.()dz=-sin(xy+y^2)[xydx+(x+y^2)dy]

    z=cos(xy+y^2)()的全微分为()(2.0分)A.()dz=-sin(xy+y^2)(dx+dy)()B.()dz=-sin(xy+y^2)[ydx+(x+2y)dy]()C.()dz=-sin(xy+y^2)(y^2dx+xdy)()D.()dz=-sin(xy+y^2)[xydx+(x+y^2)dy]

  • 2022-06-08 问题

    设z=f(x+y,xy),则dz=

    设z=f(x+y,xy),则dz=

  • 2022-07-28 问题

    f(z)在单连域G内解析,C为G内任意一条闭曲线,则积分∮_C▒〖f(z)dz〗= A: 0 B: 2πif(0) C: 2πi D: 2π

    f(z)在单连域G内解析,C为G内任意一条闭曲线,则积分∮_C▒〖f(z)dz〗= A: 0 B: 2πif(0) C: 2πi D: 2π

  • 2022-06-16 问题

    函数\(z = {e^ { { x^2} - 2y}}\)的全微分为 A: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx +2{e^ { { x^2} - 2y}}dy\) B: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx - 2{e^ { { x^2} - 2y}}dy\) C: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy+ 2{e^ { { x^2} - 2y}}dx\) D: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy - 2{e^ { { x^2} - 2y}}dx\)

    函数\(z = {e^ { { x^2} - 2y}}\)的全微分为 A: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx +2{e^ { { x^2} - 2y}}dy\) B: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx - 2{e^ { { x^2} - 2y}}dy\) C: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy+ 2{e^ { { x^2} - 2y}}dx\) D: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy - 2{e^ { { x^2} - 2y}}dx\)

  • 2022-06-09 问题

    设\(z = f(x,y)\),\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({f'_x} \sin t+ 3{t^2}{f'_y}\) B: \({f'_x} \cos t+ {t^2}{f'_y}\) C: \({f'_x} \cos t+ 3{t^2}{f'_y}\) D: \({f'_y} \cos t+ 3{t^2}{f'_x}\)

    设\(z = f(x,y)\),\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({f'_x} \sin t+ 3{t^2}{f'_y}\) B: \({f'_x} \cos t+ {t^2}{f'_y}\) C: \({f'_x} \cos t+ 3{t^2}{f'_y}\) D: \({f'_y} \cos t+ 3{t^2}{f'_x}\)

  • 2021-04-14 问题

    (dx/ds)2+(dy/ds)2+(dz/ds)2=1

    (dx/ds)2+(dy/ds)2+(dz/ds)2=1

  • 2021-04-14 问题

    智慧职教: 二元函数z=f(x,y)的全微分公式dz=()

    智慧职教: 二元函数z=f(x,y)的全微分公式dz=()

  • 2021-04-14 问题

    已知“syms x y z t a b; x=a*cos(t); y=a*sin(t); z=3*t; dx=diff(x,'t'); dy=diff(y,'t'); dz=diff(z,'t'); f=y*dx-x*dy+(x+y+z)*dz; t1=0; t2=2*pi; W=int(f,t,t1,t2)”,则正确的说法是【】

    已知“syms x y z t a b; x=a*cos(t); y=a*sin(t); z=3*t; dx=diff(x,'t'); dy=diff(y,'t'); dz=diff(z,'t'); f=y*dx-x*dy+(x+y+z)*dz; t1=0; t2=2*pi; W=int(f,t,t1,t2)”,则正确的说法是【】

  • 2022-05-28 问题

    函数z=,则函数的全微分为() A: dz=()dx B: dz=()dy C: dz=  ()dx+()dy D: dz=0

    函数z=,则函数的全微分为() A: dz=()dx B: dz=()dy C: dz=  ()dx+()dy D: dz=0

  • 1 2 3 4 5 6 7 8 9 10