已知函数f(x)是定义在实数集R上的奇函数,且f(x)在[3,5]上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)
已知函数f(x)是定义在实数集R上的奇函数,且f(x)在[3,5]上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)
函数f(x)=x²-5x+8,则f’(x)=3x²-5,f’(0)=-5
函数f(x)=x²-5x+8,则f’(x)=3x²-5,f’(0)=-5
设函数y=f(x)有二阶导数,对任意实数x,满足:f(x)=-f(-x)及f(x)=f(x+1),若f'(1)>0,则有 ( ) A: f"(-5)≤f'(-5)≤f(-5) B: f(-5)=f"(-5)<f'(-5) C: f'(-5)≤f(-5)≤f"(-5) D: f(-5)<f(-5)=f"(-5)
设函数y=f(x)有二阶导数,对任意实数x,满足:f(x)=-f(-x)及f(x)=f(x+1),若f'(1)>0,则有 ( ) A: f"(-5)≤f'(-5)≤f(-5) B: f(-5)=f"(-5)<f'(-5) C: f'(-5)≤f(-5)≤f"(-5) D: f(-5)<f(-5)=f"(-5)
函数f(x)=x²-5x+8,则f’(x)=3x²-5,f’(0)=-5(1.0分)
函数f(x)=x²-5x+8,则f’(x)=3x²-5,f’(0)=-5(1.0分)
已知函数f(X)是奇函数,f(3)=5,则f(-3)= ( A: -5 B: 0 C: 5 D: 无法确定
已知函数f(X)是奇函数,f(3)=5,则f(-3)= ( A: -5 B: 0 C: 5 D: 无法确定
3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$
3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$
已知g(0)=1,f(2)=3,f’(2)=5,等于(). A: 1 B: 2 C: 3 D: 5
已知g(0)=1,f(2)=3,f’(2)=5,等于(). A: 1 B: 2 C: 3 D: 5
fx=1/2^x+根号2,求f(-5)+f(-4)+...+f(0)
fx=1/2^x+根号2,求f(-5)+f(-4)+...+f(0)
若函数f(x)=kx+3满足条件f(1)=0,则f(5)=______。
若函数f(x)=kx+3满足条件f(1)=0,则f(5)=______。
设f(x)在[0,π]上二阶连续可导,且f(π)=2满足∫π0(f(x)+f″(x))sinxdx=5,试计算f(0)的值.
设f(x)在[0,π]上二阶连续可导,且f(π)=2满足∫π0(f(x)+f″(x))sinxdx=5,试计算f(0)的值.