设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)
设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)
分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2
分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2
设二维随机变量(X,Y)服从正态分布N(1,1;0,1;0),则P{XY-Y<0}____。
设二维随机变量(X,Y)服从正态分布N(1,1;0,1;0),则P{XY-Y<0}____。
设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=____。
设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=____。
设\(z = xy{e^{\sin xy}}\),则\({z'_y} = \)( )。 A: \(x{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) B: \(y{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) C: \(x{e^{\sin xy}}\left( {1 + y\cos xy} \right)\) D: \(x{e^{\sin xy}}\left( {1 - xy\cos xy} \right)\)
设\(z = xy{e^{\sin xy}}\),则\({z'_y} = \)( )。 A: \(x{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) B: \(y{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) C: \(x{e^{\sin xy}}\left( {1 + y\cos xy} \right)\) D: \(x{e^{\sin xy}}\left( {1 - xy\cos xy} \right)\)
设z=f(xy)/x+yφ(x+y),f、φ具有二阶连续导数,则∂<sup>2</sup>z/∂x∂y=()。 A: yf′(xy)+φ′(x+y)+yφ′′(x+y) B: yf′′(xy)+φ(x+y)+yφ′′(x+y) C: yf′′(xy)+φ′(x+y)+yφ′′(x+y) D: yf′′(xy)+φ′(x+y)+yφ′(x+y)
设z=f(xy)/x+yφ(x+y),f、φ具有二阶连续导数,则∂<sup>2</sup>z/∂x∂y=()。 A: yf′(xy)+φ′(x+y)+yφ′′(x+y) B: yf′′(xy)+φ(x+y)+yφ′′(x+y) C: yf′′(xy)+φ′(x+y)+yφ′′(x+y) D: yf′′(xy)+φ′(x+y)+yφ′(x+y)
在下图中,已知斜截面上无应力,该x、y面上的应力分量满足关系 ( )[img=363x330]1803be4a6959759.png[/img] A: σx>σy, τyx>τxy B: σx<σy, τxy=τxy C: σx>σy, τyx=τxy D: σx<σy, τyx>τxy
在下图中,已知斜截面上无应力,该x、y面上的应力分量满足关系 ( )[img=363x330]1803be4a6959759.png[/img] A: σx>σy, τyx>τxy B: σx<σy, τxy=τxy C: σx>σy, τyx=τxy D: σx<σy, τyx>τxy
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)
设\(z = {e^u}\sin v,\;u = xy,\;v = x + y\),则\( { { \partial z} \over {\partial y}}=\)( ) A: \(x{e^{xy}}\sin \left( {x + y} \right) + {e^{xy}}\cos \left( {x + y} \right)\) B: \(x{e^{xy}}\sin \left( {x + y} \right) \) C: \( {e^{xy}}\cos \left( {x + y} \right)\) D: \(x{e^{xy}}\sin \left( {x + y} \right) - {e^{xy}}\cos \left( {x + y} \right)\)
设\(z = {e^u}\sin v,\;u = xy,\;v = x + y\),则\( { { \partial z} \over {\partial y}}=\)( ) A: \(x{e^{xy}}\sin \left( {x + y} \right) + {e^{xy}}\cos \left( {x + y} \right)\) B: \(x{e^{xy}}\sin \left( {x + y} \right) \) C: \( {e^{xy}}\cos \left( {x + y} \right)\) D: \(x{e^{xy}}\sin \left( {x + y} \right) - {e^{xy}}\cos \left( {x + y} \right)\)
xy’+y
xy’+y