已知函数f(x)是定义在实数集R上的奇函数,且f(x)在[3,5]上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)
已知函数f(x)是定义在实数集R上的奇函数,且f(x)在[3,5]上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)
以 下 不 等 式 中 ,不 正 确 的 是( )。 A: 1 2 3 4 5 6 <(1 2 3 4 5 6)H B: (1 1 0 1 0 1 0 1 0 1 0 1 0)B>(F F F)H C: (9)H> 9 D: 1 1 1 1 >(1 1 1 1)B
以 下 不 等 式 中 ,不 正 确 的 是( )。 A: 1 2 3 4 5 6 <(1 2 3 4 5 6)H B: (1 1 0 1 0 1 0 1 0 1 0 1 0)B>(F F F)H C: (9)H> 9 D: 1 1 1 1 >(1 1 1 1)B
函数f(x)=x²-5x+8,则f’(x)=3x²-5,f’(0)=-5
函数f(x)=x²-5x+8,则f’(x)=3x²-5,f’(0)=-5
已知三次Hermite插值多项式满足:H3(χ0)=f(χ0),H3(χ1)=f(χ1),H′3(χ0)=f′(χ0),H′3(χ1)=f′(χ1)。如果增加一节点χ及条件f(χ2),f′(χ2),试从H3(χ)构造五次多项式H5(χ)满足:H5(χi)=f(χi),H′5(χi)=f′(χi)(i=0,1,2)
已知三次Hermite插值多项式满足:H3(χ0)=f(χ0),H3(χ1)=f(χ1),H′3(χ0)=f′(χ0),H′3(χ1)=f′(χ1)。如果增加一节点χ及条件f(χ2),f′(χ2),试从H3(χ)构造五次多项式H5(χ)满足:H5(χi)=f(χi),H′5(χi)=f′(χi)(i=0,1,2)
函数f(x)=x²-5x+8,则f’(x)=3x²-5,f’(0)=-5(1.0分)
函数f(x)=x²-5x+8,则f’(x)=3x²-5,f’(0)=-5(1.0分)
3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$
3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$
下面程序段的运行结果是( )。 A: t i=0,a[]={3,4,5,4,3}; B: { C: i]++; D: hile(a[++i]<5); E: r(i=0;i<5;i++) F: intf("%d ",a[i]); G: 4 5 6 5 4 H: 3 4 5 4 3 I: 4 5 5 5 4 J: 4 5 5 4 3
下面程序段的运行结果是( )。 A: t i=0,a[]={3,4,5,4,3}; B: { C: i]++; D: hile(a[++i]<5); E: r(i=0;i<5;i++) F: intf("%d ",a[i]); G: 4 5 6 5 4 H: 3 4 5 4 3 I: 4 5 5 5 4 J: 4 5 5 4 3
【单选题】Which of the following matrices does not have the same determinant of matrix B: [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -1, 0, -9,-5] A. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 0; -1, 0, -9, -5] B. [1, 3, 0, 2; -2, -5, 7, 4; 1, 0, 9, 5; -1, 0, -9, -5] C. [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -3, -5, -2, -1] D. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 1; -1, 0, -9, -5]
【单选题】Which of the following matrices does not have the same determinant of matrix B: [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -1, 0, -9,-5] A. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 0; -1, 0, -9, -5] B. [1, 3, 0, 2; -2, -5, 7, 4; 1, 0, 9, 5; -1, 0, -9, -5] C. [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -3, -5, -2, -1] D. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 1; -1, 0, -9, -5]
在x轴上,与原点距离为5的点的坐标为( )。 A: (5, 0) B: (-5, 0) C: (0, 5) D: (5, 0)或(-5, 0)
在x轴上,与原点距离为5的点的坐标为( )。 A: (5, 0) B: (-5, 0) C: (0, 5) D: (5, 0)或(-5, 0)
设函数$f(x)$在$x=0$处连续,且$\underset{h\to 0}{\mathop{\lim }}\,\frac{f({{h}^{2}})}{{{h}^{2}}}=1$,则()。 A: $f(0)=0$且${{{f}'}_{-}}(0)$存在 B: $f(0)=1$且${{{f}'}_{-}}(0)$存在 C: $f(0)=0$且${{{f}'}_{+}}(0)$存在 D: $f(0)=1$且${{{f}'}_{+}}(0)$存在
设函数$f(x)$在$x=0$处连续,且$\underset{h\to 0}{\mathop{\lim }}\,\frac{f({{h}^{2}})}{{{h}^{2}}}=1$,则()。 A: $f(0)=0$且${{{f}'}_{-}}(0)$存在 B: $f(0)=1$且${{{f}'}_{-}}(0)$存在 C: $f(0)=0$且${{{f}'}_{+}}(0)$存在 D: $f(0)=1$且${{{f}'}_{+}}(0)$存在