设f(X)在[a,b]上连续,且0≤f(X)≤1,试证必存在一点Q∈[0,1]使得f[Q]=Q我追分,请不要所问非所
举一反三
- 设f(x)在[a,b]上连续,且f(x)不恒等于零,证明∫(a,b)[f(x)]²dx>0
- 设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得
- 设f′(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f[(a+b)/2]<0,试证至少存在一个点ξ∈(a,b)使f′(ξ)=f(ξ)。
- 设$f(x)$在$[a,b]$上连续,且$\int_a^bf(x)dx=0$,则在$[a,b]$上, A: $f(x)\equiv 0$ B: 必存在$\xi$,使得$f(\xi)=0$ C: 必有唯一的$\xi$,使得$f(\xi)=0$ D: 不一定存在$\xi$,使得$f(\xi)=0$
- 设f(x)在[0,1]上可导,f’(x)>0,且f(x)[0,f(1)]0,则f(x)在(0,1)内() A: 零点个数不能确定 B: 至少有两个零点 C: 没有零点 D: 有且只有一个零点