均方误差是衡量贝叶斯估计的性能指标之一,若\(\hat A\)是基于观测量\(z\)对\(A\)的贝叶斯估计,则\(Mse(\hat A)\)的表达式是
A: (A)\(Mse(\hat A) = E\left[ {{{(A - \hat A)}^2}} \right] = \int_{ - \infty }^\infty {{{(A - \hat A)}^2}p(z;A)dz} \);
B: (B)\(Mse(\hat A) = E\left[ {{{(A - \hat A)}^2}} \right] = \int_{ - \infty }^\infty {{{(A - \hat A)}^2}p(A)dA} \)
C: (C)\(Mse(\hat A) = E\left[ {{{(A - \hat A)}^2}} \right] = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {{{(A - \hat A)}^2}p} } (z,A)dzdA\)
D: (D)\(Mse(\hat A) = E\left[ {{{(A - \hat A)}^2}} \right] = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {{{(A - \hat A)}^2}p} } (A{\rm{|}}z)dzdA\)
A: (A)\(Mse(\hat A) = E\left[ {{{(A - \hat A)}^2}} \right] = \int_{ - \infty }^\infty {{{(A - \hat A)}^2}p(z;A)dz} \);
B: (B)\(Mse(\hat A) = E\left[ {{{(A - \hat A)}^2}} \right] = \int_{ - \infty }^\infty {{{(A - \hat A)}^2}p(A)dA} \)
C: (C)\(Mse(\hat A) = E\left[ {{{(A - \hat A)}^2}} \right] = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {{{(A - \hat A)}^2}p} } (z,A)dzdA\)
D: (D)\(Mse(\hat A) = E\left[ {{{(A - \hat A)}^2}} \right] = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {{{(A - \hat A)}^2}p} } (A{\rm{|}}z)dzdA\)
举一反三
- 设 $X$ 为连续型随机变量,其概率密度为 $f(x)$,则数学期望 $E(X)=$( ). A: $\int_{-\infty}^{+\infty}f(x)dx$ B: $\int_{-\infty}^{+\infty}xf(x)dx$ C: $\int_{-\infty}^{x}f(x)dx$ D: $\int_{-\infty}^{x}xf(x)dx$
- 单边拉氏变换的表达形式为 A: $F(s)=\int_{0_-}^\infty f(t)e^{-st}dt$ B: $F(s)=\int_{-\infty}^{+\infty} f(t)e^{-st}dt$ C: $F(s)=\int_{-\infty}^{+\infty} f(t)e^{-jst}dt$ D: $F(s)=\int_0^\infty f(t)e^{-jst}dt$
- 二维连续型随机变量 $(X,Y)$ 的概率密度函数为 $f(x,y)$ 满足的性质有( ). A: $f(x,y)\ge 0$ B: $\int_0^{+\infty}\int_0^{+\infty}f(x,y)\mathrm d x\mathrm d y=\displaystyle\frac{1}{2}$ C: $\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)\mathrm d x\mathrm d y=1$ D: $\int_0^{+\infty}\int_0^{+\infty}f(x,y)\mathrm d x\mathrm d y=1$
- 连续型随机变量 $X$ 的密度函数为 $f(x)$ ,则 $X$ 的取值落在区间 $(a,b]$ 上的概率 $P\{a A: $\int_{-\infty}^a f(x)\mathrm d x$ B: $\int_{-\infty}^b f(x)\mathrm d x$ C: $\int_{a}^b f(x)\mathrm d x$ D: $\int_{a}^{+\infty} f(x)\mathrm d x$
- (2). 根据最小二乘法拟合直线回归方程是使( )。 A: \( \sum {\left( {y_i -\hat {y}_i } \right)^2} =\mbox{ 最小 } \) B: \( \sum {\left( {y_i -\hat {y}_i } \right)} =\mbox{ 最小 } \) C: \( \sum {\left( {y_i -\bar {y}} \right)^2} =\mbox{ 最小 }\) D: \( \sum {\left( {y_i -\bar {y}} \right)} =\mbox{ 最小 }\)