举一反三
- 证明 [tex=0.786x1.0]59uVln8a2zRyv0n5hgPyQg==[/tex]的一元多项式环 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 能与它的一个真子环同构.
- 证明定理:设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个有单位元的环, [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的一个未定元.(1) [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的零元 0 就是[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]的零元 (即零多项式);(2) [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 是有单位元的环,且 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的单位元就是 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的单位元;(3) 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是无零因子环, 则 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是无零因子环, 且 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的单位就是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的单位;(4) 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是交换环,则 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是交换环;
- 证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上的一元多项式环 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]能与它的某个真子环同构.
- 环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的多项式环 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的子集:[tex=10.5x1.571]10UHV/DxEVBYhrfOmYLMS/oE/7Ks8EIAktoJxAhOqd2dYk22kEm/lN7skD8L3zcMUYfjrLlc3rQfUFjrIqEFwQ==[/tex],[br][/br][tex=9.857x1.357]+7kW6DXtRWsru/sxuJbBpOnS88OrzkAIgJL52jHSmXcJQsTk2MdukESGAPPAhjEy[/tex],则 [tex=2.214x1.214]kAVRtrf9vqZPBf9ZKLTXYg==[/tex] 均是 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的子环。
- 令[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]是一个复数,并且是[tex=1.929x1.357]7thWjW6P+ez5FABhuPplFQ==[/tex]中一个非零多项式的根.令 [tex=10.571x1.357]dfaMLEnrsK/r/jBOWWyK8IPNNCJ4SjDEAsV9M4QeBRH5729OMXlz0IvW8JCKNg4N[/tex].证明 :[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]在[tex=1.929x1.357]7thWjW6P+ez5FABhuPplFQ==[/tex]中不可约。
内容
- 0
试证明下列命题:全体超越数(即不自整系数方程 [tex=14.071x1.429]xVcTiMj8uqW9GjMqB7Wp+hdIXmdkAc6ZLFTxPiPz11JXfh4w3nCRkYHiJcjV+PquiCvPGi9nw/q992QGMvCXQA==[/tex] 的根)的基数是 [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex].
- 1
证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]
- 2
假定 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是模 7 的剩余类环,在 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 里把乘积[tex=13.5x1.571]1mozSZPmTDk0iZAfoGbSXnOelqTN0/dkYhjcU65OdFp1ann7b44m9v7d3WfJanWB51HbTxs3hwJeYJ5JgYjybafXVKfcHeBaMrNZWSFEF0c=[/tex]计算出来.
- 3
设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是交换整环,[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的分式域,[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一元多项式环,证 明[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上的一元多项式环且[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]与[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]有相同的分式域。
- 4
设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是交换整环,但不是域,证明[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]不是主理想整环。