函数\( f(x,y) = {x^3} - 2xy + {y^2} \)在点(1,2)处对x的偏导数是 ______ 。
举一反三
- 函数\( z = {x^2} - xy + {y^2} \)在点\( (1,2) \)处最大的方向导数=______ 。
- 当x^2+y^2≠0时,函数F(x,y)=1/(x^2+y^2),当x^2+y^2=0时,函数F(x,y)=0,则函数F(x,y)在点(0,0)处 A: 连续但偏导数不存在 B: 偏导数存在但不连续 C: 既不连续偏导数也不存在 D: 连续且偏导数存在
- 考虑二元函数f(x,y)的下面四个性质: (1)f(x,y)在点f(x,y)处连续; (2)f(x,y)在点f(x,y)处的两个偏导数连续; (3)f(x,y)在点f(x,y)处可微; (4)f(x,y)在点f(x,y)处的两个偏导数存在; 若用P=>Q表示可由性质P推出性质Q,则有.
- 函数\(z = {x^2}y + {y^2}\)在点\((2,3)\)处的关于\(x\)的偏导数为______
- 若函数y=f(x)的导数y′=f′(x)仍是x的函数,就把y′=f′(x)的导数y″=f″(x)叫做函数y=f(x)二阶导数,记做y(2)=f(2)(x).同样函数y=f(x)的n-1阶导数的导数叫做y=f(x)的n阶导数,表示y(n)=f(n)(x).在求y=ln(x+1)的n阶导数时,已求得y′=1x+1,y(2)=-1(x+1)2,y(3)=1•2(x+1)3,y(4)=-1•2•3(x+1)4,…,根据以上推理,函数y=ln(x+1)的第n阶导数为___.