设连通的简单平面图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有 7 个顶点,15 条边,求[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的面数 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 并证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 为极大平面图,并画出一个这样的极大平面图.
举一反三
- 设简单连通平面图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的节点数[tex=1.929x1.0]Ahmfdo6bCmnogYpp4NRgvg==[/tex]且边数[tex=2.714x1.0]sO9KKjMfPqmfAuipv5sPuw==[/tex],求[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的面数[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]以及围每个面所需的边数。
- 设平面图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个面,且每两个面均有公共边,求[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的最大值。
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是简单图, 证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是完全图当且仅当 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 有 [tex=2.857x2.214]jcCMHflCR8OS9TosV6N5vMuPmF8DXSHKmIKBnV2ExTOzIbKHOfak9FzzxRS+B78HS9CqeTlpcCcUdpM7q4bAOg==[/tex] 条边.
- 若简单平面图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的节点数[tex=2.5x1.0]ua15E5p+9xsjNZsLZigWeg==[/tex]且边数[tex=2.714x1.0]dklUqe7psTC0B/Vrstgg5Q==[/tex],则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是连通图,试证明之。
- 已知连通平面图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的阶数 [tex=1.929x1.0]yAwdJClFFZz0thsJz14zeA==[/tex], 边数 [tex=2.214x1.0]MaMGJ6xLGDcKa23LlbDGrQ==[/tex],求它的面数 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex].