已知连通平面图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的阶数 [tex=1.929x1.0]yAwdJClFFZz0thsJz14zeA==[/tex], 边数 [tex=2.214x1.0]MaMGJ6xLGDcKa23LlbDGrQ==[/tex],求它的面数 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex].
举一反三
- 已知平面图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的阶数 [tex=1.929x1.0]CrBsWLm0WOkljV5cbIFATw==[/tex],边数 [tex=2.214x1.0]EEwIwCJeovOwZXgifc0ljQ==[/tex],面数 [tex=1.786x1.0]reu53N3Sx6JBcB7RmwJsfA==[/tex], 连通分支数 [tex=1.857x1.0]JjqCv0etyb2+KgFhYPGHDQ==[/tex], 求 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的对偶图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的 阶数 [tex=1.0x1.071]cX8K3PWqy8T7iclEsYEJ7Q==[/tex]、边数[tex=1.286x1.071]temAN1Jb20fn4CmpuXo4pw==[/tex]面数 [tex=0.929x1.071]IBNH4jjhZIn6t7n7W9WcfQ==[/tex].
- 设简单连通平面图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的节点数[tex=1.929x1.0]Ahmfdo6bCmnogYpp4NRgvg==[/tex]且边数[tex=2.714x1.0]sO9KKjMfPqmfAuipv5sPuw==[/tex],求[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的面数[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]以及围每个面所需的边数。
- 已知非连通平面图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的阶数 [tex=2.429x1.0]bjFzIDf14DKAooueSbqkKw==[/tex], 边数 [tex=2.214x1.0]EEwIwCJeovOwZXgifc0ljQ==[/tex],面数 [tex=1.786x1.0]Gz4GRLLzFj014/8HSjWhJg==[/tex],求[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的连通分支个数 [tex=0.857x1.0]UgnVXcT87p/iXM7Ft04AYQ==[/tex]
- 求 8 阶自对偶图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的边数 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 和面数 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex].
- 设连通的简单平面图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有 7 个顶点,15 条边,求[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的面数 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 并证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 为极大平面图,并画出一个这样的极大平面图.