• 2022-05-30
    讨论以下函数在点 [tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex] 的重极限与累次极限:[tex=7.429x2.357]pR6EqR/hX+iiaxwp3rGybLfYzi+DxraLHdmUQBqY/26CYbDssyH8x6fawsExaQ2q[/tex].
  • 解: 累次极限为:[tex=7.857x2.357]MqOfsQLAB/zeVSdv1WggGI1Alqk7SytT03RYr5O8OOA09CkZ+B6dxuZy62iSS9ynCYl2Yerbl7pkH7TrSiAFmBfMMzetmSQJnsiD6XpJ8CA8oMcBYS9jcSd5z20w65Tz[/tex][tex=4.143x1.571]MqOfsQLAB/zeVSdv1WggGEa4CEmzCCuM3IF0GivD3Tnqthe0pDYa/5ASw/XN1mha[/tex] [tex=7.857x2.357]1LJdhTdwfZqgFFCt4I/5gNIZZvXk0u5H8MFqDSIlNaFOJSL3hhMu+VtnwIw1mHkTimsjhSfoaiQnsA5s9U2cZSqslr1+0sRwPIWewF8+k+R98LO+irajvV/XHNHDpkqK[/tex][tex=4.5x1.714]1LJdhTdwfZqgFFCt4I/5gMcN78H39YsblekbEt4WfnoYXAaawOwvO4XuLtPTXbre[/tex]因此, 函数 [tex=2.857x1.286]sAm+rfNZfah4fCLf4TF/NA==[/tex] 的两个累次极限存在且相等.现让动点 [tex=2.214x1.286]4LKLAfUM43kRJKbMoTvNeA==[/tex] 沿着直线 [tex=6.429x1.286]Iyia+Lfx58FuDFMjNjGKcWfq+KxEAdAK0Fdu9DKC8RKh4W6ZHOzE17za175R40aj[/tex] 向 [tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex] 点移动[tex=7.643x3.571]mU4WWnz8j07ifiusxQTQjVnwOrMWt5eHJk+VVTbTX/pMwYPSR0X9fsK8JKsu/s+5ZC62l7KNuJjEO+BPjemkxrhQj1gqAgAyvowyg+tNl7DrW21vuuwY60FoPpnHEmD6[/tex][tex=13.214x3.571]mU4WWnz8j07ifiusxQTQjVnwOrMWt5eHJk+VVTbTX/pMwYPSR0X9fsK8JKsu/s+5VQn5QfGsUkus3x75IRjmcDPuGdX05knV1bJIqSNPafgWMycF6FYnrWQIhdkBGwA7BKrKBgNUB0qaS5kLTl+CjPaxGraKfdgZghxDVtthEt4=[/tex]故函数 [tex=2.857x1.286]sAm+rfNZfah4fCLf4TF/NA==[/tex] 的重极限不存在.

    内容

    • 0

      如果函数[tex=2.857x1.286]5Gn0okVYhIav2LZhmG03FA==[/tex]在[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex]处连续,那么下列命题正确的是 未知类型:{'options': ['若极限[tex=5.214x3.0]Wh0BbcsxbdPTUak0FdVk/fJwyU4OoxQUX91V8b6bv9af3yJYy4Q0UrMLNE88di4Hq9LgtwS/KzFfyUl/NwIdG0uuRWCbiUPUvjsrvsExMqo=[/tex]存在,则[tex=2.857x1.286]5Gn0okVYhIav2LZhmG03FA==[/tex]在[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex]处可微', '若极限[tex=4.929x3.0]Wh0BbcsxbdPTUak0FdVk/fJwyU4OoxQUX91V8b6bv9af3yJYy4Q0UrMLNE88di4Hq9LgtwS/KzFfyUl/NwIdG2XN3lQZOaDX3d5WQLFI+lo=[/tex]存在,则[tex=2.857x1.286]5Gn0okVYhIav2LZhmG03FA==[/tex]在[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex]处可微', '若[tex=2.857x1.286]5Gn0okVYhIav2LZhmG03FA==[/tex]在[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex]处可微,则极限[tex=5.214x3.0]Wh0BbcsxbdPTUak0FdVk/fJwyU4OoxQUX91V8b6bv9af3yJYy4Q0UrMLNE88di4Hq9LgtwS/KzFfyUl/NwIdG0uuRWCbiUPUvjsrvsExMqo=[/tex]存在', '若[tex=2.857x1.286]5Gn0okVYhIav2LZhmG03FA==[/tex]在[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex]处可微,则极限[tex=4.929x3.0]Wh0BbcsxbdPTUak0FdVk/fJwyU4OoxQUX91V8b6bv9af3yJYy4Q0UrMLNE88di4Hq9LgtwS/KzFfyUl/NwIdG2XN3lQZOaDX3d5WQLFI+lo=[/tex]存在'], 'type': 102}

    • 1

      设函数[tex=8.929x1.286]MHgAgxtvUjqUjNg7ccXsPYfXiUg67jHoQmYipz0iybw=[/tex],则下列结论正确的是[input=type:blank,size:6][/input] . 未知类型:{'options': ['点[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex]是[tex=2.857x1.286]5Gn0okVYhIav2LZhmG03FA==[/tex]的极小值点', '点[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex]是[tex=2.857x1.286]5Gn0okVYhIav2LZhmG03FA==[/tex]的极大值点', '点[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex]不是[tex=2.857x1.286]5Gn0okVYhIav2LZhmG03FA==[/tex]的驻点', '点[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex]不是[tex=2.857x1.286]5Gn0okVYhIav2LZhmG03FA==[/tex]的极值'], 'type': 102}

    • 2

      若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?

    • 3

      求以下函数在指定点处的泰勒公式:[tex=4.857x1.929]pR6EqR/hX+iiaxwp3rGybCb2rq8lnAjFmMgP/v6PDaQ=[/tex] 在点 [tex=2.143x1.286]OGI1nc8WH38NKUnYUafisA==[/tex] ( 到三阶为止 ) .

    • 4

      set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}