• 2022-05-30
    对以[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为自变量, [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 为因变量作线性回归分析时,下列正确的说法是A. 只要求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从正态分布B. 只要求 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 服从正态分布C. 只要求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 是定量变量D. 要求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 都服从正态分布E. 要求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 服从双变量正态分布
  • D

    举一反三

    内容

    • 0

      设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]独立,且[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从均值为 1 、标准差(均方差)为[tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex]的正态分布,而[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 服从标准正态分布. 试求随机变量[tex=5.429x1.143]huB4ZoJzEVd/0NhytOd1Sg==[/tex]的概率密度函数.

    • 1

      设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立, 已知 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从 [tex=2.071x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex] 上的均匀分布 , [tex=0.643x1.0]yiKSuEZSf0pGVWn/suob3g==[/tex] 服从指数分布 [tex=1.786x1.357]w1f4XKLB58tvQ0AY7oFQrw==[/tex] . 试求[tex=13.357x1.357]XFvuIG+AMHfBc0rsAtm5iQ1mpzm2/NBpr+jn26P+xlRpHH5x7/Kl+wkeu75vjqRD[/tex] 的概率密度.

    • 2

      设随机向量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 都只能取两个值,试证: [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的独立性与不相关性是等价的.

    • 3

      设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]

    • 4

      设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的泊松分布。求 [tex=5.286x1.357]t2WmSWvTpZdqSQbDpk4HSg==[/tex]