设函数f(x)在x=1处可导,且f"(1)=2,则
A:
B: A.-2
C: B.
D: C.
E: D.2
A:
B: A.-2
C: B.
D: C.
E: D.2
举一反三
- 设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则()。 A: f(-2)/f(-1)>1 B: f(0)/f(-1)>e C: f(1)/f(-1)<e<sup>2</sup> D: f(2)/f(-1)<e<sup>2</sup>
- 设函数f(x)在x=1处可导,且lim h→0 f(1)-f(1+2h)/h=-1/2,则f'(1)=() A: -1/2 B: 1/2 C: 1/4 D: -1/4
- 设函数f(x)={x2,x≤1;ax+b,x>1},为使函数f(x)在x=1处连续且可导,则()。 A: a=1,b=0 B: a=0,b=1 C: a=2,b=-1 D: a=-1,b=2
- 设函数f(x)在x=1处可导,且f"(1)=1,则 A: B: A.2 C: B. D: C. E: D.4
- 设函数f(x)在x=1处连续且可导,则(). A: a=1,b=0 B: a=0,b=1 C: a=2,b=-1 D: a=-1,b=2