10. 数列和级数的收敛性验证是高等数学中的两个非常重要的问题,使用图形的方法是发现结论的最直观方法,实际上只要将数列(或者部分和数列)的前面一些项在图形上画出来并看看是否有收敛于某值的趋势。数列`{a_{n}}`收敛. 其中`a_{n}=0.5(a_{n-1}+{5}/{a_{n-1}}),a_{1}=28`
举一反三
- 下列多项式在有理数域上不可约的是( )。 A: $(x-a_{1})(x-a_{2})...(x-a_{n})-1$,其中$a_{1},a_{2},...,a_{n}$是两两互异的整数; B: $(x-a_{1})(x-a_{2})...(x-a_{n})+1$,其中$a_{1},a_{2},...,a_{n}$是两两互异的整数; C: $(x-a_{1})^{2}(x-a_{2})^{2}...(x-a_{n})^{2}+1$,其中$a_{1},a_{2},...,a_{n}$是两两互异的整数; D: $(x-a_{1})^{2}(x-a_{2})^{2}...(x-a_{n})^{2}-1$,其中$a_{1},a_{2},...,a_{n}$是两两互异的整数.
- 设$\{a_n\}$是正项数列,则下列选项中正确的是 A: 若$a_n>a_{n+1}$,则$\sum_{n=1}^{\infty}(-1)^{n-1}a_n$收敛 B: 若$\sum_{n=1}^{\infty}(-1)^{n-1}a_n$收敛,则$a_n>a_{n+1}$ C: 若$\sum_{n=1}^{\infty}a_n$收敛,则存在常数$p>1$,使得$\lim_{n\to\infty}n^pa_n$存在 D: 若存在常数$p>1$,使得$\lim_{n\to\infty}n^pa_n$存在,则$\sum_{n=1}^{\infty}a_n$收敛
- 作为线性空间$R^{3}$上的变换,下列$\cal A$不是线性变换的是( )。 A: $\cal {A}(a_{1},a_{2},a_{3})=(2a_{1}-a_{2}+a_{3},a_{2}-a_{3},2a_{1}+a_{3})$ B: ${\cal A}(a_{1},a_{2},a_{3})=(a_{1},0,a_{2})$; C: ${\cal A}(a_{1},a_{2},a_{3})=(a_{1},2a_{2},3a_{3})$ D: ${\cal A}(a_{1},a_{2},a_{3})=(a_{1}^{2},a_{2}-a_{3},a_{3}^{2})$
- 证明数列Un=1/n,n=1,2,3,...为收敛数列,并且其极限为0
- 若函数$f(x)$满足条件:$f(x+\pi)=-f(x)$, 则在$(-\pi,\pi)$内的傅里叶级数满足下列哪个特性? A: $a_{2n}=b_{2n}=0, (n=1,2,\cdots)$ B: $a_{2n-1}=b_{2n-1}=0, (n=1,2,\cdots)$ C: $a_{2n-1}=b_{2n}=0, (n=1,2,\cdots)$ D: $a_{2n}=b_{2n-1}=0, (n=1,2,\cdots)$