随机梯度下降算法有效解决了反向传播算法更新梯度的问题,但也容易出现局部最后的问题。此时只需要使用[br][/br]Momentum动量法,就可以彻底解决训练陷入局部最优。
举一反三
- 全局梯度下降算法、随机梯度下降算法和批量梯度下降算法均属于梯度下降算法,以下关于其有优缺点说法错误的是() A: 全局梯度算法可以找到损失函数的最小值 B: 批量梯度算法可以解决局部最小值问题 C: 随机梯度算法可以找到损失函数的最小值 D: 全局梯度算法收敛过程比较耗时
- 基于梯度的数值优化算法容易陷入局部最优解,不适用于求解复杂系统的全局最优解。(<br/>)
- BP神经网络的三个训练命令:trainbfg, traingd, traingdm 分别用的是什么算法? A: 梯度下降算法,梯度下降动量,牛顿算法 B: 梯度下降动量,梯度下降算法,牛顿算法 C: 准牛顿算法,梯度下降动量,梯度下降算法 D: 准牛顿算法,梯度下降,梯度下降动量算法
- 反向传播算法的提出是为了解决深度神经网络中梯度计算的效率问题
- 关于梯度下降算法,以下说法正确的是 A: 随机梯度下降算法是每次考虑单个样本进行权重更新 B: Mini-Batch梯度下降算法是批量梯度下降和随机梯度下降的折中 C: 批量梯度下降算法是每次考虑整个训练集进行权重更新 D: 以上都对