设X、Y是两个独立的服从速率为[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]的泊松随机变量.试求:[tex=13.214x1.357]f9ukmVGWpmaNyHb5sEL78XaJFP1WisSWzP907nC7mzWJuxqA+VY2ISHySYynUWzP[/tex]
举一反三
- 设X、Y是两个独立的服从速率为[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]的泊松随机变量.试求:[tex=3.857x1.214]TxhnOAPdrLA4ZCa4YFvkFg==[/tex]的特征函数
- 随机变量X服从参数为[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]的泊松分布,且已知[tex=8.571x1.357]gWyoTuxxsfaBqL4MAoQPzg==[/tex],则[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]=[input=type:blank,size:4][/input].
- 设随机变量X与Y相互独立且均服从[tex=2.786x1.357]8J65g2h9ZFpY6fLUQihNfQ==[/tex],试求[tex=1.5x1.0]L5bzyUIaFHXibCzVPmrejw==[/tex][tex=2.214x1.143]taRipPt/iaQDuxjQtp9vbQ==[/tex]的密度函数.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 设随机变量X、Y均服从N(0,1),并且相互独立,试求[tex=7.786x1.214]xwn/uoQ4tdIv7NwxX1ZOUbNcze0gkJuMWPVOJdjRdng=[/tex]的联合分布密度。