• 2022-05-29
    假设向量 [tex=0.571x1.214]CyLt5nwVs0oLAbCn8AssqQ==[/tex] 可以经向量组 [tex=5.429x1.0]C3Gt0wf4j9ybsfUN2FHZHPpFHlKGuZ51iii+CZEnJIcinPreWueZ3hFSLADWVU2w[/tex] 线性表出,证明 :表示法是唯一的充分必要条件是[tex=5.857x1.0]C3Gt0wf4j9ybsfUN2FHZHPpFHlKGuZ51iii+CZEnJId5XKmJ/DhNl7tdympcIlea[/tex]线性无关.
  • 解[tex=11.143x1.214]hRNi8iua6xTtfD+K8pEhLrBb4xfJu/VvQdyC9wA4bDCd6MDNzgRZMpmx18aYDBlwDW3HhhluUWeobtef8gPDC4nnfxHlVfgqLzqv31rPrMk=[/tex]必要性. 若 [tex=5.786x1.0]C3Gt0wf4j9ybsfUN2FHZHPpFHlKGuZ51iii+CZEnJIcBRzY8RvG9cjwSoPbigRLZ[/tex]线性相关,则有不全为零的数 [tex=5.5x1.214]c9JSeWY0LSxDOYW66kXAAiq5NQ8LmZOM6KumVbLANgI=[/tex]使[tex=12.071x1.214]TinSXfPNqsSTGDd3/k6bfUZhcRo/sEf5JO5ne49ZgDaHaKpAVC3TFh4Hg/IissIZWKgBGMpkdLJOr5/HrdWehgV1/o0KFPbiobPf3M/D31o=[/tex] 于是[tex=19.929x3.071]qeiYnKXLEhyhuGRg8yLtr8kUu+q4Se9rRMJraL0CkH6ODor4IRXozRJIyonBsXzV+fs+lyEKdzDlhzPvzFLw/bXYYcP5CFPKtqmwnt2lFgVL7rSW6311KUrm/h4f1TG7Vqh5VgP+uMHxJQrZl+0qNyOzVyAqgLSC8nAfiZ/aIZI/vQDSURYwTveewz6/Ngp5KLeK3NV089p9JVg4Bjj7DdxgvL/QY5a4hTRL5dWk9HyDsSZvhE22JGtOf+SjUFAN2lPgxW4oJToIYiZ/YZn0TiokWiK4jn2h5Kaqru1tbC3HKD23AOhnzjp5cH2pCE4e[/tex]因至少有一个[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex], 不为零,故至少有一个 [tex=3.571x1.214]KiCfeQLuN/eryZN6WkgB7oXyIYLBOXKYwSOBkUnZIlM=[/tex]这样 [tex=0.571x1.214]CyLt5nwVs0oLAbCn8AssqQ==[/tex]与[tex=4.643x1.0]TRDsQXu8Q/fyo/enqTlnoAQKWllzuNi1d2Sxjto5gmhqK9RiWYXlYXyfF2DPb7xQ[/tex]线性无关.充分性. 已知[tex=5.786x1.0]7pNelk4HUVBg38zOC/iSU59HJtkoHYVs0TPIcqNfu4LQiaUyEf+UfuAsSpcQZeMf[/tex]线性无关. 若 [tex=0.571x1.214]CyLt5nwVs0oLAbCn8AssqQ==[/tex] 有两种方法表成[tex=5.429x1.0]C3Gt0wf4j9ybsfUN2FHZHPpFHlKGuZ51iii+CZEnJIcinPreWueZ3hFSLADWVU2w[/tex]的线性组合 :[tex=12.5x2.929]a0s3MH7cLIdmiBRR0YN06758FaftZQDGcbQI00poyy8IJLM7VnrHLuJvcjz3kyvKlEO9BzPBeh+DytvaQv8d+PGCY3ELqLU2/HVKVyTio57hQ/XIz5MMtaJpbXjEOZUL2HT3iFSLAQAoyup7CcAoeE+2756pmK4K+XnMIjzWUIV2XlzxvS+KKPURQXluiiP14WtIXUW7PgCtqmj3hEtV1pc0BLZjPv3EU8KwdLn/gn4=[/tex]则[tex=19.714x3.071]a0s3MH7cLIdmiBRR0YN063BjerzVy9RbBTop382sDEbYbtA4VGk68udt4sl5Xi/yg1pHeNr/Q0PGNvIA9Ubdusc3rJiJj3ylLlFCFCVYSbF2IYIZOpTSYcZGZ+cUeTPLP5b0AuUyoj9DUZIWmk3sa7hBmkToPl+/c0JJd4otULiLJjadSfCjjTSG9qiX1/hGB0eVF+5aa/StasguQGqw51F+cwmwMGWLiOqt7mEgL4TJYiLVhJrLoR1n7l7btPei0tgX51YIyieK4y7ajw2NNiwDLs9XmuZWNoFzzwFs+nmeKpgZ2BztN0IhyxwIhYroeOb8s7AdrXhU1w0pAdp9EyIAZMcmh9gkROTOYTVxZe0=[/tex]由[tex=5.429x1.0]C3Gt0wf4j9ybsfUN2FHZHPpFHlKGuZ51iii+CZEnJIcinPreWueZ3hFSLADWVU2w[/tex] 线性无关,则[tex=13.857x1.214]NnOXpnr1GE/pKUKiaviZgkKE0ap/sBeLrxt+uOlXZsy0rha1gVTehD8XwGUS5wDSu/e/S+OUtwa8vjfIS96cEQ==[/tex] 即有 [tex=10.0x1.214]VmUwVl+kXBNn8y7/IuHOBECmU+W1sWhuHLsiIVKDRmtvcSFPTWto4RMk9vv8hVaS2IXPhRsXl1xN0Aqy+cu5Pw==[/tex]这证明了表示法的唯一性.

    举一反三

    内容

    • 0

      证明:由非零向量组成的向量组[tex=8.929x1.357]7pNelk4HUVBg38zOC/iSU88HyqryjOXVFLrLi0G37Bseb6lfdMAuagry5A+v4QVryr3qyqhhLdHVYcgwUAUlMg==[/tex]线性无关的充分必要条件是 : 每一个[tex=5.643x1.357]Ah+PDHhe0h6R6SsTmun/82Zru0CmTAdyfSQZYj6RnyU=[/tex]都不能用它前面的向量线性表出.

    • 1

      证明:由非零向量组成的向量组[tex=8.571x1.357]xJr2ny42kcAcTeyzkoXuGr0LYeRlQ48UpU1bnKzFBjl+7+GPAaa6WLe97pguLIfpKXfHf3Yc/XiRB6DLLL054Q==[/tex]线性无关的充分必要条件是:每一个[tex=5.214x1.357]qulE2au0sCsC2RUF6/a3J5trgrTON7w0poIFqNPdcCfieox6X7wcnvsBjx4ILu/O[/tex]都不能用它前面的向量线性表出。

    • 2

      设向量组 [tex=11.571x1.357]7pNelk4HUVBg38zOC/iSU88HyqryjOXVFLrLi0G37Bv3vFe58VTVts85zftLCmSsQ2oIuu6YUi51uU59Of5wx5pdeRwnSHQkpCsJd+MiCcQ=[/tex] 中,前 [tex=1.929x1.143]qMmLG3OT6I+UYFeehawKuA==[/tex] 个向量线性相关,后 [tex=1.929x1.143]qMmLG3OT6I+UYFeehawKuA==[/tex]个向量线性无关 试证:  [tex=1.0x1.0]E4FovvvmKFxHayApGHhrvg==[/tex] 可由向量组[tex=5.429x1.0]vBnfH7DMUMLwwnhaMFtCEpeA2ztOXeSw0cgmsBIqCnPAXvprx/sVHOyWT6SQeGC2[/tex] 线性表出

    • 3

      下列向量组中,( )是线性无关向量组。 A: (1, 1, 0), (0, 2, 0), (0, 0, 3) B: (1, 2), (3, 0), (5, 1) C: (2, 6, 0), (3, 9, 0), (0, 0, 2) D: (1, 2), (--3, 0), (5, 1)

    • 4

      向量组 [tex=5.429x1.0]C3Gt0wf4j9ybsfUN2FHZHPpFHlKGuZ51iii+CZEnJIcinPreWueZ3hFSLADWVU2w[/tex] 的秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的充要条件是  A: 向量组中不含零向量 B: 向量组中没有两个向量的对应分量成比例 C: 向量组中有一个向量不能由其余向量线性表示 D: 向量组线性无关