无穷区间上的反常积分的基本思想就是先求有限区间上的定积分,再取极限。
举一反三
- 说明一个无界函数反常积分可以化为无穷区间的反常积分.
- 当 在有界区间 上存在多个瑕点时, 在 上的反常积分可以按常见的方式处理:例如,设 是区间 上的连续函数,点 都是瑕点,那么可以任意取定 ,如果反常积分 同时收敛,则反常积分 收敛。()
- 当在有界区间上存在多个瑕点时,在上的反常积分可以按常见的方式处理:例如,设是区间上的连续函数,点都是瑕点,那么可以任意取定,如果反常积分同时收敛,则反常积分发散。()
- 当ƒ(x)在有界区间I上存在多个瑕点时,ƒ(x)在I上的反常积分可以按常见的方式处理。如,可设ƒ(x)是区间[a,b]上的连续函数,点a,b都是瑕点,则可以任意取定c∈(a,b),如果在区间[a,c]和[c,b]上的反常积分同时收敛,那么在区间[a,b]上的反常积分也收敛。
- 当ƒ(x)在有界区间I上存在多个瑕点时,ƒ(x)在I上的反常积分可以按常见的方式处理。如,可设ƒ(x)是区间[a,b]上的连续函数,点a,b都是瑕点,则可以任意取定c∈(a,b),如果在区间[a,c]和[c,b]上的反常积分同时收敛,那么在区间[a,b]上的反常积分也收敛