函数\( z = \sqrt {y - {x^2}} \) 的定义域为( )。
A: \( y < {x^2} \)
B: \( y \leqslant {x^2} \)
C: \( y > {x^2} \)
D: \( y \geqslant {x^2} \)
A: \( y < {x^2} \)
B: \( y \leqslant {x^2} \)
C: \( y > {x^2} \)
D: \( y \geqslant {x^2} \)
举一反三
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 下列哪个函数的定义域是有界集? A: $f(x,y)=e^{-x^2-y^2}$ B: $f(x,y,z)=\sqrt{1-x^2-y^2-z^2}$ C: $f(x,y)=\ln(y-x)$ D: $f(x,y)=\sqrt{1-x^2}+\sqrt{y^2-1}$
- 下列不等式正确的是( ) A: \( { { {e^x} + {e^y}} \over 2} < {e^ { { {x + y} \over 2}}}\quad (x \ne y)\) B: \((x + y){e^{x + y}} < x{e^{2x}} + y{e^{2y}}\quad (x > 0,y > 0,x \ne y)\) C: \( { { {x^n} + {y^n}} \over 2} < {( { { x + y} \over 2})^n}\quad (x > 0,y > 0,x \ne y,n > 1)\) D: \(x\ln x + y\ln y < (x + y)ln { { x + y} \over 2}\quad (x > 0,y > 0,x \ne y)\)
- 函数$f(x,y)=\sin x\cdot \ln (1+y)$在点$(0,0)$处带有Peano型余项的3阶Taylor公式为$f(x,y)=$ A: $xy+\frac{1}{2}x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ B: $xy-\frac{1}{2}x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ C: $xy-x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ D: $xy+x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$
- 已知int x=1,y=2,z=3;执行if(x>y) z=x;x=y;y=z;后x,y,z的值为( ) A: x=1,y=2,z=3 B: x=2,y=3,z=3 C: x=2,y=3,z=1 D: x=2,y=3,z=2