未知类型:{'options': ['100[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]', '-30[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]', '30[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]'], 'type': 102}
举一反三
- 设[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]是线性空间 [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换. 证明:[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]的特征值一定不为 0
- 设[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维欧氏空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个对称变换,且[tex=2.357x1.214]+yMFkw0zysC3uLtrSOQZ04A7ibXUEpuqUiZnufmRBxQ=[/tex],证明,[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]中存在一个规 范正交基,使得[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]关于这个基的矩阵有形状[tex=10.857x9.071]oe11HVlBpgnqVUEEYpbT7koWFhaH6xgQQrrO9znxmAGP1o70yVyagXy3VoRXD0ON+Eh3C3ZtRked3onldUKdfYj7rKJo1V+Dp5fVbTZBLiFhFE1BL52a3BxCFGviYAbPdC1H9u8MxmO15+sK2NI7yNb9jh1vLQytP+t8cZcz0O4146epb4KA12zrhlcAZURF[/tex]
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换.证明:1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值一定不为0;2) 如果[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值,那么[tex=1.643x1.357]7hXLKuNcz29qRRA2zjn4rA==[/tex]是[tex=1.714x1.214]d+9NDUvA5ZDrRGeFW5fxcQ==[/tex]的特征值.
- 设[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]是数域[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维线性空间,证明:由[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的全体线性变换组成的线性空间是[tex=1.0x1.214]Z5GZ0zNulrjGJKMFBGia4w==[/tex] 维的
- 令[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]是数域[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上向量空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个线性变换,并且满足条件[tex=2.357x1.214]+yMFkw0zysC3uLtrSOQZ04A7ibXUEpuqUiZnufmRBxQ=[/tex].证明:[tex=8.286x1.357]ZKT1r7DC2eOfnWo1m8Vow1eKIUYZiaNZ2QInKDJ1FQR7F+5yeeP+3ir4NBilh11v85N/0hyhk+dj4NKg9kKr7w==[/tex]
内容
- 0
设[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]是数域[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维线性空间,证明:[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的与全体线性变换可以交换的线性变换是数乘变换.
- 1
令[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]是数域[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上向量空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一些线性变换所成的集合.[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个子空间[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]如果在[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]中每一线性变换之下不变,那么就说[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]是[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]的一个不变子空间.如果[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]在[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]中没有非平凡的不变子空间,则是不可约的,设[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]不可约,而[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个线性变换,它与[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]中每一线性变换可交换.证明[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]或者是零变换,或者是可逆变换.
- 2
实际气体的压力[tex=1.286x1.357]AR2NvaqshFFoH8b+1iPmqQ==[/tex]和体积[tex=1.429x1.357]CYsRytf0Euh1f1/21Tloow==[/tex]与理想气体相比,分别会发生的偏差为[input=type:blank,size:4][/input]。 [tex=1.571x1.357]t4j8DiUnyf9QhxbEEfhEow==[/tex] [tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]、[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 都发生正偏差 [tex=1.571x1.357]6ZdvBUUXTfu1lpc1bzYo0Q==[/tex] [tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]、[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 都发生负偏差[tex=1.5x1.357]X5iBhM5NuOpB4RU5sidyMA==[/tex] [tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] 正偏差,[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 负偏差 [tex=1.643x1.357]wpzMUyk23s46CrIX9IcgFw==[/tex] [tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] 负偏差,[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 正偏差
- 3
设[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的有限维线性空间,[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的一个线性变换,[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个子空间,用[tex=2.643x1.214]KdJTfdOLEBWMXQir5AfhBQ==[/tex]表示[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]在[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]下的原象集,证明:[tex=2.643x1.214]KdJTfdOLEBWMXQir5AfhBQ==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个子空间,且[tex=15.571x1.571]lBXXZYMMrxJ2+/5vAU9EvVvBGnLtY5JG8CbyUBVipe1uKDCQ1/KMuX64J9SLCi3ar2m76lz6zTaMR/0PayL319rvQLU4zhEdMizyHv9JVIUABc0jzkHxvW8wRmhsuQQnu66lpQQHQ5Y6rNUSTKc/IJw3GVC2rz/DOYqBVzfdYTs77YU3Muuc0/toyWs+9rVf2Yiw28jepiPWOuG3qlOl0Q==[/tex]。
- 4
设[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维欧式空间.证明:如果[tex=3.071x1.214]aKCzKguPwZrqT3KIz/rPig==[/tex]都是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的子空间, 且[tex=3.929x1.214]mpMQ4Ru5iSHdEe8yWA+LnWVXOqkUqWcmSai3+gNB1u8=[/tex],那么[tex=4.714x1.5]mrXs+eTyKg7VSoADvWalB2EFQL+n6GObcbhLexGRw6E3OBog0zdJNi05ub5KA4Yc[/tex].