• 2022-05-30
    若n是大于1的自然数,求证122+132+…+1n2>12-1n+1.
  • 证明:∵1n2>1n(n+1)∴1n2>1n-1n+1∴122+132+…+1n2>12-13+13-14+…+1n-1n+1∴122+132+…+1n2>12-1n+1

    内容

    • 0

      排列\( n(n - 1)(n - 2) \cdots 3 \cdot 2 \cdot 1 \)的逆序数是( ) A: \( {1 \over 2}n(n - 1) \) B: \( n(n - 1) \) C: \( n \) D: \( {n^2}(n - 1) \)

    • 1

      已知()y()=()ln()x(),则()y()(()n())()=()。A.()(()−()1())()n()n()!()x()−()n()"()role="presentation">()(()−()1())()n()n()!()x()−()n();()B.()(()−()1())()n()(()n()−()1())()!()x()−()2()n()"()role="presentation">()(()−()1())()n()(()n()−()1())()!()x()−()2()n();()C.()(()−()1())()n()−()1()(()n()−()1())()!()x()n()"()role="presentation">()(()−()1())()n()−()1()(()n()−()1())()!()x()-n();()D.()(()−()1())()n()−()1()n()!()x()−()n()+()1()"()role="presentation">()(()−()1())()n()−()1()n()!()x()−()n()+()1().

    • 2

      设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]

    • 3

      设α1,α2,…,αn是n维列向量,又A=(α1,α2,…,αn),B=(αn,α1,…,αn-1),若|A|=3,则|A+B|=______.

    • 4

      【单选题】已知数列{a n }中,a 1 =1,当n≥2时,a n =2a n - 1 +1,依次计算a 2 ,a 3 ,a 4 后,猜想a n 的一个表达式是()(5.0分) A. n 2 ﹣1 B. (n﹣1) 2 +1 C. 2 n ﹣1 D. 2 n ﹣ 1 +1