• 2022-05-30
    设二次型[tex=6.357x1.286]azJPYkBkJ0OlxSfK5H+BIROFyCNgO/PulWrQz//9Zh4Uqg3a16SbLoGCRUwpQWcE[/tex][tex=8.643x1.286]XPNDI7csNHnqWQ92RQ5arPw9OFoyPFtmyUJjZWkyPU+tFEMK5stYnoeVEB6pkpUE[/tex][tex=5.571x1.286]O7LwsPxSbKNzsUaYdcaFWygs220DvTXPD9EOEt3wCzV5gBm79JVKY16MwSAmvcvZ[/tex][tex=2.929x1.286]vedobJ7KUaWclGusUFos9g==[/tex]的矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值之和为1,特征值之积为-12 . (1)求[tex=1.429x1.286]+fmtub6g+tF54Tl5ap2zBg==[/tex]的值;(2)利用正交变换将二次型[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]化为标准形,并写出所用的正交变换和对应的正交矩阵 . 
  • [b]解[/b]    (1)二次型[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]的矩阵为[tex=8.643x3.643]K2vMsZ5TBuB8kq2pfBmYYM/KltuPyox8nEcKtY36n7Xn+3rih9Uep1i26cEi83dbRmpbAFct3mp4XIDqqf5bJa1rIG6427pfEywdiPID7vh6fEcuoSKrw5aff0CHz4M4[/tex] . 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值为[tex=5.571x1.286]BOuwUKGVsFCloTaxL4CzVIgE9lqOQ4nhgz/wQynQ/G0=[/tex] . 由题设有[tex=6.429x1.286]2Fd2jfP41iHdYW7yYrOVV/38HyL4Ngs/KXd9c56CziAsFWfq6A0Cl8qwADgjnV5y[/tex][tex=7.143x1.286]/L12kGierQh2jnRSBv938g==[/tex],[tex=4.071x1.286]TmOfe60tOpnPNPHXb9ePvwUb4pDQWvmg35PucW6HdRNGqyBBgS0IGoXceTWyAaha[/tex][tex=7.286x1.286]SK5rIZo/IZQcOcxtN/leAkgclqxDTTrZygqoxL4umCI=[/tex],解得[tex=2.286x1.286]eCAr9eRtkdgH6k2o3ZRxwg==[/tex],[tex=2.929x1.286]tp8f+I8y3IAaxBUATLpNyA==[/tex] . (2)由矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征多项式[tex=4.857x1.286]qFwIgF/WNSATlgptLrhEAPj4LH5uM16otqtv6tbjLkc=[/tex][tex=6.429x1.286]gqjg4kaCmNefXOejhsFzwxaQ3pcLsNa9DzJVNQYGIog=[/tex], 得[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值[tex=5.071x1.286]ROWvxENvVFoBx0io+2ouLk7El5lTrddAOPbUh/6Xr70=[/tex],[tex=3.0x1.214]R09+q07H5Etc4SxwXL2upg==[/tex] . 对于[tex=5.071x1.286]ROWvxENvVFoBx0io+2ouLk7El5lTrddAOPbUh/6Xr70=[/tex],解[tex=6.571x1.286]O6MT6xGQViadC7ATw1L/s/3xl2NdRS3ajYsnEHXurpo=[/tex],得特征向量[tex=6.643x1.286]uy8SMW1vNN0evOXhEEOex9UAek+S3K3e+b9ba6z+Pvw=[/tex],[tex=5.857x1.286]I/Ul6/SSqA1jtfFernTyK0JxFPS2tGX6CB7r5dYZUu8=[/tex];对于[tex=3.571x1.286]lG1xd/9T8Jrp/XhbVanhwCWxFKdqGtGDMrfnvHkTf8M=[/tex],解[tex=7.286x1.286]Y/w+NMzOJXCITRAj/yIW0UGqAEl9fUNJPSneatytXL8=[/tex],得特征向量[tex=5.857x1.286]qTvIoTnrqSZ7qIJxm0dhzbRdqWzArbwfhHCUTnlHRgM=[/tex],[tex=3.429x1.286]ad+YrNPV5z87/6GHTSnMSl1kIaYk7HJxxnOfjisZLLJI2eU+0epJOEASOLJeSxOY[/tex]已正交,再单位化,得[tex=7.929x2.643]tFH6ySX8Uxn8x9UuigoNJYG3HMdTFJqMrNCKeU77+rGoGDZvHccUTjTx66qanV/3[/tex],[tex=5.929x1.286]c6FTwnrLIor3CAmBDyRX7EH+Ad44GAVPgVaDdRv0F3A=[/tex],[tex=7.429x2.214]QubaJu5V4KfsVqSYEP2/CW2ZOUFWPXn55ghrYUj21IqVXnoXAyws0ampy4mWfw9T[/tex] .  令矩阵[tex=6.429x1.286]SBgAqCFVWjIjAHoNb70/5qX7RXCMenc2Lec29y3oMiazJADaCMeIbeQq/sjI8nTbSZei2SQlLlLgtbTfhnEpmw==[/tex],则[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]为所求正交矩阵 . 在正交变换[tex=3.143x1.286]QVVOVp91gQhhEHguVLurog==[/tex]下,原二次型化为标准形[tex=8.5x1.286]lEJpj57xuVFuGaJnSVy6ViB1oynDAqhIBCAac1vAZ9dqJd593RMvnK83yyyR+HC4[/tex]  . 

    举一反三

    内容

    • 0

      已知3阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值为-1,1,2,求(1)矩阵[tex=5.571x1.286]OQw0X5RQo5/vziR0ICSSmg==[/tex]的特征值;(2)[tex=6.0x1.286]GiUfMyexR+ktDmrZJuZTGw==[/tex]。

    • 1

      设 3 阶实对称矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的各行元素之和都为 3, 向量[tex=8.286x1.286]njUu8qAvhBDUHKNq730Nh/e+7RIusjjuek1uGAbP7ubbdHodbRcNLeFlXIw0nu3S[/tex],[tex=9.071x1.286]xCzbrSO1Dsvf3UMEghvh62BKfZajeih3TIAgVKJ47Kmk3xIvB2vBIl0/R+x039Nd[/tex]都是齐次线性方程组[tex=3.429x1.286]FF5bUci0HbqKyNGyHKVoog==[/tex]的解。(1) 求[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值和特征向量;(2) 求正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]和对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex], 使得[tex=4.857x1.286]rBT5/uNzgbWBBfGRE6xSbwOuiGdAi5ccrp7SXFh1DT4=[/tex]。

    • 2

      设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正交矩阵,证明:(1)若[tex=3.786x1.286]Yjte1x6QwARCmSI7t/EPFw==[/tex],则[tex=1.214x1.286]WDa3CFFbujv+acHNTSW8sQ==[/tex]是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值;(2)若[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]为奇数,且[tex=3.071x1.286]xkU2A3eS3X9iYPOTvAVGkw==[/tex],则1是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值.

    • 3

      已知三元二次型[tex=4.357x1.286]8LqIrrbMnuf36gP3V8P3wNBWuFDsr1qEt6YD/KIVpE4=[/tex]中,矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的各行元素之和为6 .  且满足[tex=3.571x1.286]Mu5slPA18iF6aWbN9sv0mA==[/tex],其中[tex=10.143x3.643]DgXZT9CtCPAglTYwc4pEdWrrVRtVC5KfIahguxbvsqH+zkf/xxfaSNs+8TXNzHyuZwLCSvJtOZ8NYro3NnTlafymMyeA6EHzwh4sTLEMS8/d94S7uTg+SXu51zxifdPh[/tex],求正交变换化二次型[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]为标准形,并写出所作的正交变换 . 

    • 4

      设三阶实对称矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的各行元素之和均为3,向量[tex=7.571x1.286]Pp7l96OcgHRg9IqOljoeP/+pC++ZsB3SJXFnfjsvQG6RuQuO+GDMyTfKSAXCAenN[/tex],[tex=6.214x1.5]VAlAcHxv3I2v41KQonZHP9qlMBgVf3lPlii4AmU4/uY=[/tex]是线性方程组[tex=3.357x1.286]zkPgnv+RxmjUpziLKbhcsw==[/tex]的两个解 . (1)求[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值与特征向量;(2)求正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]和对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex],使得[tex=4.357x1.429]42wWZkrxVuMRs4+YhE8J5Q==[/tex] .