多项式x^4+x^2-2x+3的根的平方和?()
举一反三
- 多项式x^4+x^2-2x+3的根的平方和?() A: -2 B: -1 C: 0 D: 1
- 函数$f(x)={{\text{e}}^{2x-{{x}^{2}}}}$在$x=0$处的$3$次Taylor多项式为 A: $1+2x+2{{x}^{2}}+2{{x}^{3}}$ B: $1+2x+2{{x}^{2}}-4{{x}^{3}}$ C: $1+2x+{{x}^{2}}+\frac{2}{3}{{x}^{3}}$ D: $1+2x+{{x}^{2}}-\frac{2}{3}{{x}^{3}}$
- 1.∫(-∞,+∞)x^2/x^4+x^2+1dx,(积分从负无穷到正无穷,x的四次方加上x的平方加上1的和分之x的平方dx)
- 函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)
- $(-x-1)(x^{4}+2x^{3}-x^{2}-4x-2)+(x+2)(x^{4}+x^{3}-x^{2}-2x-2)$的结果是( )。 A: $x^{2}-2$; B: $x^{3}-x^{2}-1$; C: $2x^{3}-4x-2$; D: $x^{4}+3x-2.$