多项式x^4+x^2-2x+3的根的平方和?()
A: -2
B: -1
C: 0
D: 1
A: -2
B: -1
C: 0
D: 1
举一反三
- 多项式x^4+x^2-2x+3的根的平方和?()
- A={x▏0<x≦2},B={x▏1<x≦3},则A∩B和A∪B分别是( ) A: {x▏1<x≦3}和{x▏0<x≦3} B: {x▏1<x<2}和{x▏2<x≦3} C: {x▏1<x≦2}和{x▏0<x≦3} D: {x▏1<x≦2}:和{x▏0<x<3}
- a = [x for x in range(4) if x % 2 ==1],语句print(a)输出为 A: [1, 2, 3] B: [0, 1, 2, 3] C: [0, 2] D: [1, 3]
- 设X~U(a, b), E(X)=3, D(X)=1/3, P{2<X< 3} = ( ). A: 0 B: 1/4 C: 1/3 D: 1/2
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$