• 2021-04-14
    雨课堂: \( \int {\sec x(\sec x - \tan x)dx}  = \)(  )
  • \( \tan x - \sec x + C \)

    内容

    • 0

      设 $y=\tan x^2$,则 $y'=$( ). A: $\sec x^2$ B: $\sec^2 x^2$ C: $2x\sec^2 x$ D: $2x\sec^2 x^2$

    • 1

      \( {\sec ^2}x - {\tan ^2}x = \)______. ______

    • 2

      \( {\sec ^2}x - {\tan ^2}x = \)______. ______

    • 3

      已知\( y = \tan x \),则\( y' \)为( ). A: \( - \cos x \) B: \( - \sin x \) C: \( {\sec ^2}x \) D: \( \sec x \)

    • 4

      不定积分$\int<br/>\tan ^{2}x \sec^{2}x\text{d}x=$( ) A: $\frac{1}{3}{{\tan }^{3}}x+C$ B: $-\frac{1}{3}{{\tan }^{3}}x+C$ C: $\frac{1}{3}{{\sec }^{3}}x+C$ D: $-\frac{1}{3}{{\sec }^{3}}x+C$