\( \int {\sec x(\sec x - \tan x)dx} = \)( )
A: \( \tan x - \sec x + C \)
B: \( \tan x + \sec x + C \)
C: \(- \tan x - \sec x + C \)
D: \(- \tan x + \sec x + C \)
A: \( \tan x - \sec x + C \)
B: \( \tan x + \sec x + C \)
C: \(- \tan x - \sec x + C \)
D: \(- \tan x + \sec x + C \)
举一反三
- 3. 已知函数$y= \tan x$,则$y''(x) =$( )。 A: $ - \sec ^ 2 x \tan x$ B: $ \sec ^ 2 x \tan x$ C: $ - 2 \sec ^ 2 x \tan x$ D: $2 \sec ^2 x \tan x$
- 雨课堂: \( \int {\sec x(\sec x - \tan x)dx} = \)( )
- \(\int { { {\sec }^{3}}xdx}\)=( ) A: \(\frac{1}{2}\sec x\cot x-\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) B: \(\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) C: \(-\frac{1}{2}\csc x\tan x+\frac{1}{2}\ln \left| \sec x-\cot x \right|+C\) D: \(-\frac{1}{2}\sec x\tan x-\frac{1}{2}\ln \left| \csc x+\tan x \right|+C\)
- \( {\sec ^2}x - {\tan ^2}x = \)______. ______
- \( {\sec ^2}x - {\tan ^2}x = \)______. ______