与递推关系x(n)=2x(n-1)+1,x(1)=1等价的通项公式为
举一反三
- 11. 设函数$f(x)=({{\text{e}}^{x}}-1)({{\text{e}}^{2x}}-2)\cdots ({{\text{e}}^{nx}}-n)$,其中$n$为正整数,则${f}'(0)=$( )。 A: ${{(-1)}^{n-1}}(n-1)!$ B: ${{(-1)}^{n}}(n-1)!$ C: ${{(-1)}^{n-1}}n!$ D: ${{(-1)}^{n}}n!$
- \( {1 \over {1 + x}} \)的麦克劳林公式为( ). A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \)
- \( {1 \over {1 + x}} \)的麦克劳林公式为( )。 A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \) D: \( {1 \over {1 + x}} = 1 - x - { { {x^2}} \over 2}- \cdots - { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)
- 【论述题】系统方程为y(n)=(1/2)y(n-1)+x(n)+(1/2)x(n-1)。设系统是因果的,用递推法求单位脉冲响应
- 积分递推公式1/(x^n根号(x^2+1))