已知z=f(u,v),u=g(x,y),v=h(x,y),则/ananas/latex/p/1998497
举一反三
- 公式("x) ($y)(P(x,z)→Q(y))→S(x,y)中的约束变元进行换名,正确的是 A: ("x) ($y) (P(x,u)→Q(y))→S(x,y) B: ("x) ($v)(P(u,z)→Q(v))→S(u,v) C: ("u) ($v) (P(u,z)→Q(v))→S(x,y) D: ("u) ($v)(P(u,t)→Q(v))→S(u,v)
- 对公式∀x(P(x,y) →Q(x,z)) ∨∃zR(x,z)使用代入和换名规则后得到的公式为 A: ∀x(P(x,y) →Q(x,z)) ∨∃vR(x,v) B: ∀u(P(u,y) →Q(u,z)) ∨∃zR(x,z) C: ∀u(P(u,y) →Q(u,z)) ∨∃vR(x,v) D: ∀u(P(u,y) →Q(u,z)) ∨∃vR(u,v)
- 设u =u(x,y,z),则梯度 . /ananas/latex/p/238363
- 求函数f(x,y,u,v)在约束条件g(x,y,u,v)=a,h(x,y,u,v)=b下的极值。可以先作拉格朗日函数
- 已知解析函数 f(z) 的实部 u(x,y) = x + y,则虚部 v(x,y) 为: