函数f(x)在x=x0处连续,x0为f(x)的极值点,则必有
举一反三
- 函数f(x)在x=x0处连续,x0为f(x)的极值点,则必有
- 【单选题】函数f(x)在点x=x0处连续且取得极大值,则f(x)在x=x0处必有()。 A. f’(x0)=0 B. f’’(x0)<0 C. f(x0)=0且f’(x0)<0 D. f’(x0)=0或不存在
- 若函数f(x)在点x0连续,若x0是f(x)的极值点,则必有______。 A: f’(x0)=0 B: f’(x0)≠0 C: f’(x0)=0或f’(x0)不存在 D: f’(x0)不存在
- 函数f(x)在点x=x0处连续且取得极大值,则f(x)在x=x0处必有
- 下列结论错误的是( ). A: 如果函数f(x)在点x=x0处连续,则f(x)在点x=x0处可导. B: 如果函数f(x)在点x=x0处不连续,则f(x)在点x=x0处不可导 C: 如果函数f(x)在点x=x0处可导,则f(x)在点x=x0处连续 D: 如果函数f(x)在点x=x0处不可导,则f(x)在点x=x0处也可能连续