设f(x)有二阶连续导数,并且对任何h>0,f(x)<1/2[f(x-h)+f(x+h)].则f’’(x
举一反三
- 设f(x)为连续函数,F(x)=,则(d/dx)F(x)=() A: (f/h)(x+h) B: -(f/h)(x-h) C: (1/h)[f(x+h)-f(x-h)] D: (1/h)[f(x+h)+f(x-h)]
- 设$f(x),g(x),h(x)$是三个实系数多项式,且$$f^{2}(x)=xg^{2}(x)+xh^{2}(x)$$则$f(x),g(x),h(x)$满足条件()。 A: $f(x)=g(x),f(x)\not=h(x)$; B: $f(x)=g(x)=h(x)=0$; C: $f(x)\not=g(x),g(x)\not=h(x)$; D: $f(x)\not=g(x),g(x)=h(x)$.
- 设函数f(x)=(x-a)2φ(x),其中φ(x)有连续的导数,则______。 A: f(x)在x=a处的二阶导数不存在 B: f"(a)=4φ(a) C: f"(a)=2φ(a) D: f"(a)=0
- 下列关于整除的命题中,正确的是______。? 若f(x)|g(x)+h(x),则f(x)|g(x)或f(x)|h(x)|若f(x)|g(x)+h(x),且f(x)|g(x),则f(x)|h(x)|若f(x)|g(x)h(x),则f(x)|g(x)或f(x)|h(x)|若f(x)|g(x)h(x),且f(x)不整除g(x),则f(x)|h(x)
- 若$(f(x),g(x))=1,(f(x),h(x))=1$,则下面结论不正确的是( )。 A: $(f(x),f(x)+g(x))=1;$ B: $(f(x),h(x)+g(x))=1;$ C: $(f(x),h(x)g(x))=1;$ D: $(f(x)g(x),f(x)+g(x))=1.$