A. N-1 B. 1 C. 0 D. -N+1
举一反三
- 已知x(n)=δ(n),其N点的DFT为X(k),则X(N-1)=() A: N-1 B: 1 C: 0 D: -N+1
- 已知序列x(n)=δ(n),其N点的DFT记为X(k),则X(0)=()。 A: N-1 B: 1 C: 0 D: N
- 已知序列x(n)=&(n),其N点DFT记为X(k),则X(0)等于 A: 0 B: 1 C: N-1 D: N
- 函数$y=\ln x$的$n$阶导数为 A: $\frac{(n-1)!}{x^n}$ B: $\frac{n!}{x^n}$ C: $(-1)^{n-1}\frac{(n-1)!}{x^n}$ D: $(-1)^n\frac{(n-1)!}{x^n}$
- 11. 设函数$f(x)=({{\text{e}}^{x}}-1)({{\text{e}}^{2x}}-2)\cdots ({{\text{e}}^{nx}}-n)$,其中$n$为正整数,则${f}'(0)=$( )。 A: ${{(-1)}^{n-1}}(n-1)!$ B: ${{(-1)}^{n}}(n-1)!$ C: ${{(-1)}^{n-1}}n!$ D: ${{(-1)}^{n}}n!$
内容
- 0
下列多项式在复数域上有重根的是( )。 A: $x^{n}+1$; B: $x^{n}+x^{n-1}+...+x+1$; C: $\frac{x^{n}}{n!}+\frac{x^{n-1}}{(n-1)!}+...+x+1$; D: $nx^{n+1}-(n+1)x^{n}+1$.
- 1
中国大学MOOC: 已知x(n)=δ(n),其N点的DFT为X(k),则X(N-1)=()
- 2
当n≠-1时,∫x<sup>n</sup>lnxdx=()。 A: x<sup>n</sup>[lnx-(1/n)]/n+C B: x<sup>n</sup><sup>-1</sup>[lnx-(1/(n-1))]/(n-1)+C C: x<sup>n</sup><sup>+1</sup>[lnx-(1/(n+1))]/(n+1)+C D: x<sup>n</sup><sup>+1</sup>lnx/(n+1)+C
- 3
已知序列x(n)=R A: N-1 B: 1 C: 0 D: N
- 4
已知()y()=()ln()x(),则()y()(()n())()=()。A.()(()−()1())()n()n()!()x()−()n()"()role="presentation">()(()−()1())()n()n()!()x()−()n();()B.()(()−()1())()n()(()n()−()1())()!()x()−()2()n()"()role="presentation">()(()−()1())()n()(()n()−()1())()!()x()−()2()n();()C.()(()−()1())()n()−()1()(()n()−()1())()!()x()n()"()role="presentation">()(()−()1())()n()−()1()(()n()−()1())()!()x()-n();()D.()(()−()1())()n()−()1()n()!()x()−()n()+()1()"()role="presentation">()(()−()1())()n()−()1()n()!()x()−()n()+()1().