• 2022-05-25
    在图 [tex=2.286x1.143]X2xlNl4Z0ij3eb7eoMaO1g==[/tex] 所示系统中, 已知 [tex=6.0x1.357]/k/9bgpUYSxDmAVnKPpeSQ6ksjl94WM/qeq8KFV2D9c=[/tex] [tex=7.286x1.357]Iwjq/LNic21pU9zbm4EqD7aGMXL6gm/YY8M8paT2Q34=[/tex] [tex=19.857x1.357]KW3FqbxGDzWamgIqzlbvnWfWdefcjXF3pVdNPwSR2Ks1mPKqinqNI0UUgGGwTkzLJEVyAVTJhO5AUCWZZQ68/g==[/tex] [tex=6.571x1.357]XdgdT70AzeSmTcVrUB24B3mXV8LZwLvs4cpQO2DG73E=[/tex]  求 [tex=2.071x1.357]kTKtaRYY2zBDqYaXa9Jqlg==[/tex][img=328x249]17a36620baff04a.png[/img]
  • 解:求系统冲激响应 [tex=2.0x1.357]6NFMPVk88m4uaxANAI4vhQ==[/tex] 由[tex=9.071x1.357]Y4M2naBvsbnDtKqE2mx1uPemRbgMa5+BBlWir+BOAiAuGoRZ03ESCb7Sisj0nn+m[/tex]及 [tex=9.929x2.714]d9MIKf4PZQHNRm88uf+JiinaGotW2KDtd5Lv8tFB3/pYJ7zG4aswnAvHgtJFLEpDQWRj8eH6O3mpBPZOf0StyGtDNKtGMTvdqEhBvjTYzqU=[/tex]得[tex=18.786x2.5]251CQLBFWHVs7vXKT+/rbry8DGbQshU7O3EToYCVb/joOaPeCdUFQo+ZK1ODrD4e0QlSBM42sojuchDlZgIwlqGszPPHp6pmwO8XZJZBrYhClJC2DI1KdySZ6F/zRjijFRigAVcZ+EGB/wPaCY/Lmw==[/tex]因为 [tex=12.643x2.5]d9MIKf4PZQHNRm88uf+JisOVRKjshFXyOSTo9aAEoTwCBTULN7nU7w4rK42IsHxCmvMH/L+VZDRkDeRtw35yFfk19Q5XIVGFLVdyCf/2XZSjf8KccdaiKo7yR3A9LC3/[/tex]将 [tex=1.286x1.357]VAHhaW1te0xvoqDVN54/dg==[/tex] 式 [tex=2.071x1.357]FHIguabxkKTMJeszhekFxg==[/tex] 式, 得 [tex=19.143x2.786]SXH/ttpn8TTOH0xgWBnzO1jjGep5753mlHk87ykjfgUBuFvQ/EDHMKg8IkB8vPcD0GA8WBjHIFXCkaxxQ/Hx1mcZ/e16Pot+io23LysVm+xNY4IU/LjN0+qSEmTa8sVK2i+Ac31S/MUHX+nvo1WhpA==[/tex]将 [tex=1.286x1.357]BEB68bP4vOVk/XYYizw11w==[/tex] 式代入 [tex=1.286x1.357]dF+j2ufB5JBOJwdIPfmkfg==[/tex] 式, 得 [tex=9.5x2.714]lHDDbqkWKDCgRkzC5p4nap+y1ijtCGs85FQm+vZvwByefGgQCGHHae0XpAmPYkQUslPDG5PTAM36rGEC87AhCy0Sfs+yft5DyRo4Wjgl6oM=[/tex] 而 [tex=14.286x2.5]NCzrHp6yM552dWLIC/LyonkcVrApcDPeL286RExw147E+2SLqTmpTxi/JQ7tY9K1KIQvoN+r/PFP0sXYIs+pLHelrnKDAuatJiTt+gka1Sg=[/tex] 所以有 [tex=17.143x1.357]IOaL4ueiYmV68RR6RPGV6Ar3htOwDQzfjTCVEsXeeufHVxc09WsPZv55QJcCPV6CoOs9jwFOMNByWXxPauH8QCdNQx9qPEx1QFx9WXDxSF8=[/tex]由系统框图可知 [tex=30.429x1.357]cpX+UtoIICH1Lzi3GSyK+wIq9wDnUXGyCFHiqf1SGM9G9i2tlZaaCOyXx9Arbt6HzRyhsvKEQBXL3OyOA+MpuP6IIvSsK+ItbCZxkSnT+fKkmClpFoWyDQ64t/qgbKx4xmkYoxqvNEkPNHqqY5rj7A==[/tex]由 [tex=1.286x1.357]VHgv8yVrrSZwLqu1l6FPnQ==[/tex] 式 [tex=2.071x1.357]YyxWst/4+9PXRM297JDptQ==[/tex]式, 得 [tex=6.0x1.357]+AlxqDibX1uY3aEL2mcM7TPTV5tzZ9ZJ1OYxbQyDAbc=[/tex][color=#ff0000][b] [/b][/color]

    内容

    • 0

      输出九九乘法表。 1 2 3 4 5 6 7 8 9 --------------------------------------------------------------------- 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81

    • 1

      应用Matlab软件计算行列式[img=110x88]17da5d7b00219d6.png[/img]为( ). A: x^2 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 B: x^3 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 C: x^4 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 D: x^5- 6*x^2*y^2 + 8*x*y^3 - 3*y^4

    • 2

      若要将一个长度为N=16的序列x(n)重新位倒序,作为某一FFT算法的输入,则位倒序后序列的样本序号为( )。 A: x(15), x(14), x(13), x(12), x(11), x(10), x(9), x(8), x(7), x(6),<br/>x(5), x(4), x(3), x(2), x(1), x(0) B: x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7), x(8), x(12), x(10),<br/>x(14), x(9), x(13), x(11), x(15) C: x(0), x(2), x(4), x(6), x(8), x(10), x(12), x(14), x(1), x(3), x(5),<br/>x(7), x(9), x(11), x(13), x(15) D: x(0), x(8), x(4), x(12), x(2), x(10), x(6), x(14), x(1), x(9), x(5),<br/>x(13), x(3), x(11), x(7), x(15)

    • 3

      求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?

    • 4

      若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?