设2x是fx的一个原函数,则[∫fxdx】=
举一反三
- 2. 已知$f(x)$的一个原函数是$\sin x$,$g(x)$的一个原函数是${{x}^{2}}$,则复函数$f[g(x)]$的原函数是( ). A: $\frac{\sin 2x}{2}$ B: ${{\cos }^{2}}x$ C: $\cos {{x}^{2}}$ D: $\cos 2x$
- 设2x是f(x)的一个原函数,则f(x)=()
- 设函数 f (x)= x 2 , g (x)= 2x ,则
- 设\( f(x) \)的一个原函数为\( F(x) \),则\( \int {f(2x)dx} = \)( ) A: \( F(2x) + {\rm{ }}C \) B: \( {1 \over 2}F(2x) + {\rm{ }}C \) C: \( F({x \over 2}) + {\rm{ }}C \) D: \( 2F({x \over 2}) + {\rm{ }}C \)
- 如果一个函数f(x)有原函数,则f(x)的原函数一定有