【单选题】求一个角的正弦函数值的平方。能够实现此功能的函数是 ____ 。
A. sqofsina(x) float x ; { return(sin(x)*sin(x)) ; } B. double sqofsinb(x) float x ; { return(sin((double)x)*sin((double)x)) ; } C. double sqofsinc(x) { return(((sin(x)*sin(x)) ; } D. sqofsind(x) float x ; { return(double(sin(x)*sin(x))) ; }
A. sqofsina(x) float x ; { return(sin(x)*sin(x)) ; } B. double sqofsinb(x) float x ; { return(sin((double)x)*sin((double)x)) ; } C. double sqofsinc(x) { return(((sin(x)*sin(x)) ; } D. sqofsind(x) float x ; { return(double(sin(x)*sin(x))) ; }
举一反三
- 求函数$f(x)=x^{\sin x}$的导数 A: $x^{\cos x}$ B: $\sin (x) x^{\sin (x) -1}$ C: $x^{\sin x}(\cos x\ln x+\frac{\sin x}{x})$ D: $x^{\sin x}(\sin x\ln x+\frac{\cos x}{x}$
- 【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
- 角度x=〔304560〕,计算其正弦函数的运算为() A: SIN(deg2rad(x)) B: SIN(x) C: sin(x) D: sin(deg2rad(x))
- 求函数$f(x)=e^x\cos x$的导数 A: $-e^x\sin x$ B: $e^x\sin x$ C: $e^x(\cos x+\sin x)$ D: $e^x(\cos x-\sin x)$
- 函数\(y = x\cos x\)的导数为( ). A: \(\cos x - x\sin x\) B: \(\cos x{\rm{ + }}x\sin x\) C: \(\sin x{\rm{ + }}x\cos x\) D: \(\sin x - x\cos x\)